CHAPTER B

DEWATERING AND
COMPACTION OF SEDIMENT

(With major contributions by Johannes Wendebourg)

In this chapter we deal with those post-depositional processes that involve com-
paction of sediment and expulsion of porewater, both of which are closely linked.
Clearly, processes that affect sedimentation do not stop with deposition of sedi-
ment. Newly deposited sediment occupies space within a basin, but this space is
progressively reduced as compaction takes place in response to the load of overly-
ing sediment. Of course, some of the water in pore spaces in the sediment must be
displaced if compaction is to occur, so that dewatering and compaction are aspects
of the same basic process.

Because space must be available in a basin if sediment is to be deposited, any
space occupied by previous deposits affects opportunities for new deposits to
form. If compaction of previous deposits has occurred, more space may be locally
available than if compaction has not occurred. Thus, depositional processes are
strongly, although indirectly, affected by dewatering and compaction. Therefore,
dewatering and compaction are important components of integrated dynamic
models of sedimentary basins, even if not of primary interest in themselves.
While the relatively simple model and computer program that combine compac-
tion and dewatering that are presented here are not linked directly with other mod-
els and computer programs of depositional processes, enterprising users could
provide such linkages.

In this chapter, we treat flow through porous materials and the concept of fluid
potential. While we are principally concerned with flow in porous materials
driven by compaction, we shall also treat flow driven by differences in hydraulic
head that stem from differences in topography. Because our broad concern is
with the role of flow of porewater in sedimentary basins, we shall begin by dis-
cussing the basics of flow in porous materials.

In addition to treating compaction and fluid flow, we also discuss the thermal
regime within sedimentary basins. The thermal evolution of sedimentary basins is
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often recorded by thermally sensitive indicators that are both organic and inor-
ganic. By linking the thermal and physical evolution of basins, we can use these
thermal indicators to interpret the development of the basin. Also, thermal pro-
cesses affect the presence of oil and gas and can provide insight into the matura-
tion level of hydrocarbon sources.

DARCY'S LAW

In 1856, Henry Darcy established an empirical relationship between the flow of
water through a column of sand or other porous material, and the difference in
hydraulic head between the top and bottom end of the column (Figure 6-1).
“Hydraulic head” may be defined as the elevation to which water would rise as a
result of pressure and gravitational forces acting on it (Hubbert, 1940). Equation
(6-1) expresses this relationship, which is familiarly known as Darcy's law:

_ KAAh _ .
=— (1)

volume of water flowing through column in m3!s,

= cross-sectional area of column in mz,

length of column in m,

difference in hydraulic head between top and bottom of column
inm,

K = proportionality factor that depends on properties of both porous
material and fluid in column in m/s.
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The filtration velocity of flow u through the column is obtained by dividing @
by the cross-sectional area:

= % (6-2)

K A

Figure 6-1

Diagram illustrating Darcy's experiment in which water flows through tube of
length L and cross-sectional area A, and is filled with porous material of property
K, through which volume Q flows in response to difference in hydraulic head h
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The fluid itself, however, moves only in the pore spaces within the material, so
that the true fluid velocity v is obtained by dividing the filtration velocity by the
porosity &:

v = (6-3)

i
o

Fluids that move through porous materials obey the same laws as fluids flow-
ing in the open. This property permits us to recast Darcy's law in form of the Ber-
noulli equation (see Chapter 4). The Bernouili equation balances all forces acting
on a fluid volume and is expressed in the form of a total hydraulic head that is the
sum of a pressure head, a velocity head, and an elevation head. Because ground-
water velocities are usually very small, we can neglect the velocity head, writing
the Bernoulli equation as:
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where: = total hydraulic head in m,

p = pressure in Pa (pascals),

g = acceleration of gravity in m!sz,
p, = water density in kglms,

z = elevation in m.

This permits us to write Darcy's law in a more generalized form:

k
w=— (Vp—-p,£V2) (6-5)

where: k = intrinsic permeability that is a property of the porous medium in
2
m )

M = dynamic viscosity in cP (centipoises) or Pa’s.

Note the negative sign because flow occurs in the direction of decreasing fluid
potential.

LINKING FLUID FLOW WITH COMPACTION

Our next task is to link fluid flow in porous materials with compaction. We begin
by considering Terzaghi's concept of consolidation in soils (Terzaghi and Peck,
1967), where compaction stems from compression of the soil and pore volume is
reduced in proportion to the increase in effective stress:

de 4
v . {6-6)
where: @, = effective stress in Pa,
-1
= soil compressibility in Pa ,
3
V = bulk volume in m3,
Vp = pore volume inm .

We agsume that compaction acts only vertically and that lateral effects can be
neglected because they are small compared with effects that stem from rearrange-
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ment of grains by vertical loading. Compaction of water-saturated soil or other
porous materials, however, only partially stems from the overlying sediment load,
because some part of the siress is carried by the pore fluid. Since total stress is the
sum of effective stress and porc-ﬂuid pressure, and since total stress remains con-
stant during compaction, any change in effective stress must be compensated by

an equal change in pore-fluid pressure:

¢ = ©,+p = constant (g
or
do, = —dp (6-8)
where: p = fivid pressure in Pa,
o = total stress in Pa.

Pore pressure dissipates slowly as the pore water escapes upward. Only when
fluid pressure reaches hydrostatic conditions is the material fully compacted
under the applied load.

POROSITY AND COMPACTION

Now it is appropriate to explore the relationships between porosity and compac-
tion. We can define porosity, ¢, as the proportion of the volume of a water-satu-
rated sediment occupied by the pore water:

=S
i
<|<

(6-9)

3
where: Vv bulk volume in m ,

Vp

, 3
pore volume in m .

Change in porosity can be calculated by differentiating with respect to pore vol-
ume (deMarsily, 1986):

Eiq}___ d Vp V_Vp=v(1_¢) =1—¢
de av_'v vz V2 1%

{6-10}

Using the definitions of compaction and effective stress in (6-6) to {6-10), we can
write the change in porosity as a function of change in pore-fluid pressure:

do = —-(1-¢)ado, = (1-d)dp {6-11}

If we assume that the change in porosity yields a rate of subsidence that is small
compared to the fluid velocity, we can take the partial derivative (Freeze and
Cherry, 1979), yielding the equation of state for the porous medium:

dd op

5 = (1-9 oy, (642)
Equation (6-12) can be combined with two other equations to yield the governing
flow equation in a compacting medium. The first is the continuity equation for the
fluid:

V(o) +3(p,0) = 0 (619
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In (6-13) we can insert the momentum equation for the fluid (6-5), which is Dar-
¢y's law. The second is an equation of state for the pore water. Here, we assume an
incompressible fluid.

p,, = constant {6-14)

Now, (6-12) through (6-14) yield the classical consolidation equation:

kvl = (1-6) o ]
V[EVP:I— (1-9)os (6-15)

Equation (6-15) is used in groundwater hydraulics to describe the effects of
aquifer compaction due to withdrawal of groundwater, which reduces fluid pres-
sure, thereby increasing effective stress and, in turn, possibly leading to acceler-
ated ground subsidence. An example of accelerated subsidence due to excessive
pumping in Venice has been described by Gambolati and Freeze (1973).

COUPLED MOVEMENT OF SOLID MATERIAL
AND PORE WATER IN BASINS

Equation (6-15) assumes that solid material moves at much slower rates than the
fluid. However, in sedimentary basins that evolve through geologic time, solid
material may move at rates comparable to, or even faster than, those of pore flu-
ids. This requires that we solve the combined continuity equations for both pore
fluids and solid material (Bear, 1972; deMarsily, 1986). The fluid continuity equa-
tion is (6-13), and the solid continuity equation is:

V(p,i) + S0, (1-9)] = 0 (6-16)
where:  pg = sediment density in kg]m3,
¢ = porosity,
uy = velocity of solid material in m/s.

Again using the momentum equation for the pore fluid (6-5), coupled with the fact
that the true fluid velocity is uy,/¢, then the fluid motion can be expressed relative
to the moving solid material:

& -y LY k
iy = ¢(v,—vs) = _I‘_L (Vp- PWEV z) (6-17)
where: vy = true fluid velocity in m/s,
vy = trme solid velocity in m/s.

We can insert the momentum equation into the fluid-continuity equation and
expand the solid-velocity term:

PV B4V (0,0 =V [0, (Vp-p,a¥ ) |+2(p,0) =0 (0

So far, we have considered a fixed coordinate system through which both |
fluid and solid are moving. If we want to express (6-18) in terms of the moving
fluid only, we have to consider a volume of porous material that is moving 1
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through the coordinate system. This allows us to take the total derivative with
respect to the solid material (deMarsily, 1986):

20,0 = Lo, 0 +3,V (p,0) (6-19)

By expanding the expression, we get:

d __dp dp,
E(Pw‘b) = Pwart +¢"g{ (6-20)

Using an equation of state for the pore fluid, where fluid density is defined by an
exponential law (Freeze and Cherry, 1979), we obtain:

P, = Peexp [B(p-py)] (6-21)

where: reference pressure in Pa,
Py

B

Because density is now a function of fluid pressure, we can express its derivative
also as a function of fluid pressure:

fluid compressibility in pa’.

dp,,

= dp
el 1N 5 (6-22)

An equation of state for the solid material is more difficult to derive. Let us
start with the continuity equation for the solid material (6-16) and expand it:

P (1=0)V 5,45,V [p,(1-0)1+2[p, (1-9)] =0 (629

Analogous to the fluid equation (6-19), we can replace the partial derivatives by
the total derivative:

Lip,(1-01 = ZIp,(1-0T+5,V [p,(1-9)] (6-24)

We assume an equation of state for the solid material where the solid material is
incompressible, which in turn presumes that the grains do not deform under the
overlying load:

p, = constant (6-25)

We can then simplify the continuity equation for the solid material:

. PY db

p OV v, = e (6-26)

Now we can replace this expression in (6-18) and simplify its compaction term:

d P,0 dp P, db

— —_ = — -27
E T - a T -0 & (6-27)

Using Terzaghi's principle of consolidation from (6-7), we obtain:
G, =0-p (6-28)
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Using (6-28), we can expand the derivative of porosity with respect to time:

do dpdS, dp d(S—
a9 _ 499, _ d9 d(S-p) (6-29)
dt  do, dt do, dt

If we assume that porosity follows an exponential law as a function of effective
stress (Schneider et al., 1991):

¢ = d,exp [-(0,/0%)] (6-30)

" where 0,_9 = effective stress at reference porosity,

then we can determine its derivative with respect to effective pressure explicitly:

dp ¢
E; = ‘—0_—2 (6-31)
Finally, the total load ¢ = § is given by the integral over all overlying sediment
layers, which is a known quantity:

5= j.ps(l - 9) gdz (6-32)

Now we can write the general diffusion equation for pore-fluid motions in an
evolving sedimentary basin:

1 1 dodp 1 dbds

% :
EV[PWE(VP_PWSVZ)]—|:¢|3‘*—1__¢d—0_jz = __l—¢d_0'ez (6-33)

Equation (6-33) does not explicitly consider topographically driven flow for
which the hydraulic head is needed, which is the sum of the pressure head and the
elevation head. Topographically driven flow can be introduced by setting the
boundary conditions such that the pressures at the topographic boundary reflect
the elevation head (Bethke, 1989). However, flow induced by elevation head gen-
erally is small relative to pressure-induced gradients within the ranges of depths
and permeabilities of evolving sedimentary basins. However, as sedimentary
basins approach maturity, earlier overpressures may have dissipated as sedimenta-
tion rates decrease, and may be replaced by steady-state flow fields that are driven
by differences in topographic elevation. These steady-state flow fields may persist
to substantial depths (Toth, 1978).

IMPLEMENTATION OF SIMPLIFIED
DIFFUSION EQUATION

The general diffusion equation for an evolving sedimentary basin (6-33) has been
implemented in a computer program in a simplified form. The equation is solved
for a vertical cross section through a basin. In addition, the fluid is assumed to be
incompressible, so that fluid potential can be represented by the pressure potential
only. Applying these simplifications and expanding (6-33), we obtain:

k. 9 k, 9 1 dbd 1 dbds
9 _‘_f] i[_zﬁ] _ Hap 1 4945 y
Bx[uax Yl nE%l tT-9do, & T 1 4do, & €24)
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which is the governing equation for pore-fluid motion where compaction is cou-
pled with fluid flow in a two-dimensional vertical section across an evolving sedi-
mentary basin. Note that we assume uniform thermal conditions so that viscosity
of the pore fluid remains constant.

Permeability is assumed to be a function of porosity, which is usually derived
from log-linear cross plots of permeability versus porosity (Bethke, 1985),
according with the general equation:

logk = a+bd (6-35)

Since we assume that the porous material is anisotropic, permeability can be rep-
resented as a two-dimensional tensor if the grid representing the vertical section is
oriented along the principal axes of flow:

0
1 = P %o (6-36)
0f,
where: f, = anisotropy coefficient for horizontal direction (usually 1),
fv = anisotropy coefficient for vertical direction (usually < 1).

Equation (6-34) can be solved only with appropriate initial and boundary con-
ditions. At the lower boundary (represented by an impermeable basement), there
is no flow:

q,=0 (6-37)

. ... 3
where g, = volume flux in the vertical direction in m /s.
At the upper boundary (represented by the top of the sequence of sedimentary
deposits), the pressure is assumed to be hydrostatic:

P=p,82 (6-38)

At the lateral boundaries, the pressure gradient is assumed to be constant:

Vp = constant (6-39)

OBTAINING NUMERICAL SOLUTIONS
OF THE DIFFUSION EQUATION

Program 24, Compaction and Fluid Flow Program, which is included in the Pro-
grams diskette accompanying this book, solves (6-34) in a discrete form employ-
ing finite differences. Finite-difference approximations can be derived directly
from the differential equation, but can be used only when the grid is orthogonal.
Alternatively, a local mass-balance procedure may be used if the grid is not
orthogonal, which is the situation here. While we represent the sedimentary basin
in a two-dimensional section that has equally spaced columns along the x axis
(horizontal dimension), the z axis (vertical dimensicn) is represented by beds
whose thicknesses vary both laterally as well as from layer to layer. The grid is
therefore nonorthogonal, which permits both the basement topography and the
aggregate thickness of basin fill to vary along the section. The local mass-balance
procedure therefore is used for each individual layer,
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Figure 6-2  Definition of grid cell geometry and indices. Grid cell i,j and its four neighbor cells are
shown. Note that horizontal grid spacing is constant, whereas vertical grid spacing
depends on thickness of cell and therefore is variable.

The flow terms of the left-hand side of (6-34) can be expanded by performing
a mass-balance for a single grid cell. Properties for such a cell are defined at its
center, whereas the fluxes through the cell are defined at its boundaries. The hori-
zontal or x direction has index j, and the vertical or z direction has index i (Figure
6-2). In the horizontal direction, inflow is from the right boundary of a cell
(gi,j+0.5) and outflow is at the left boundary (g j-¢.5):

k,dp
%[fa:l =4d;;+05 "9 j-05 (6-40)

where:  ky = inlrinsic permeability in x directioninm ,

. 3
volume flux in m /s.

q
Inflow is given by:

kn. L AXTP =P
_ NE St §i+1 i,j+0.5
9ij+05 _Azi,j+0.5 |: } -

m Ax/2
(6-41)
A ky iDX[P;jros—Pij
Z 5405 m Ax/D )
q = 2[( ! ) +( L )Tlu'1 (p;jr1—pPip) (642
hyt03 ki Azjros . ki 1B 2 .05 Birl o Fh ‘
with: |
\ |
Azios = (Az+8z,,,)/2 {6-43) |
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and outflow is given by:

kx.',ij Pij—Pij-os
%ij-05=82; g5 m |: Ax/2 :| (
6-44)
_A i j-1AX[Pij_05—Pij_1
G-0sT Ax/2
1 1 -1
%0 =2[( ) + ( )] Wl (p,, Pl (648)
7m0 ki Az 05 kij-182; ;05 hi b
with:
Azi,j—O,S =A (Z,,J+A z'-_j_I) /2 (6‘46)

Similarly, in the vertical direction, inflow is from the upper boundary of a vol-
ume element (g;+95,7) and outflow is at the lower boundary (g;-¢s,):

d [kz ap

3z Ea_z} Z4i105.5 " 9i-05,; (6-47)

where inflow is given by:

K1 AXPiv1i—Pivos. ki DxTPisosi—Pij
. = A zi+ 1§ i+l,j Fi+035,) _ Ziy J i+05,j i
QI-I-O_S,J X m AZH,IJ/Z Ax i AZE‘J-/Z (6-48)
2 (Ax)? O
9it05,; = Az Az H (P:‘+1,j—pi'j) (6-49)
JE— + —_
(k)r'+l,j (k).-,,-
and outflow is given by:
ki fAX[Pi;—Pi—os,j ki AX[Picos;—Pio1,f
. = A Zi, } |: L i - !J:| __A zt +J |: f 3, J I oJ 6-50
Gi-05; =AY — | TRz 72 T az_ 2 ] &
2(Axn)° »
905 = “A, Az [ (P,-,j—P,-_LJ-) (6-51)
J— + [ —
( k):;j (k)i—l,j
Accumulation due to compaction is approximated by:
_ n+l__ n
1 (di)d_sg Voiy (Z9\PL_~PLs (6-52)
1-¢ ‘do, dt 1—q>l.j a° At

e
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The sediment-load term is approximated by:

1 (dﬂ ds_ Vi, (—tb,-'j)psgAzH (1-6, (6-53)
1-¢ 'do, dt 1—¢,..J. 02 At
where: k = index of layer that loads sediment column,
S = sediment load in Pa,
z = thickness in m.
Pore volume is given by:
2
Voi i = &, ;8 2, (A%) (6-54)

Boundary conditions are approximated as follows. At the lower boundary,
there is no flow, and therefore:

o5, = 0 (6-55)

At the upper boundary, fluid pressure is hydrostatic:

Prj = Pu8t,; (6-56)
where: k = index of loading sediment layer,
Zp; = elevation at topography.

At the left boundary, the pressure is given by a constant gradient:
Pio= 20517 P, (6-57)
At the right boundary, the pressure is also given by a constant gradient:
Pins1 = 2P0 P,y (6-58)

where: 7 = number of columns in grid.

SOLVING THE SYSTEM OF EQUATIONS
OVER THE GRID

For each grid node, there is one equation with five unknown pressures. Thus, we
can establish a linear system of equations with as many equations as there are
unknown pressures in the grid. Each equation is of the following form:

APt Bipi ;T CiiPiitDiPray;t E P =Fij (6-59)
with coefficients 4;; to F; ;defined as:
A = 2[( Ly )Tu‘1 (6-60)
b ki Az o ki 1A% ;_os
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2 (Ax)?

3 -1
B, = Ay, (B # el
k7o kT
v PG _¢|" i -
C,;=—(A+B+D+E) +1__E¢f_[ GOJJA; 1 (6-62)
i,J e
_ et
A Ao A .
ki1 k7
£, =2 Loy )Tu‘ (6-64)
b ki iAZ; ji0s kv 1A%, ;105
Vi ] —.q)l' f — .

The resulting system of equations yields a banded matrix that is pentadiagonal,
with a bandwidth m = 2r + 1, where n = number of sediment layers:

..0.. B C D ..0.. E Picngl | (6-66)
A --0.. B, C; D, .0.. E,||p; F,;
A ..0..B C D .0.||Py

In Program 24, Compaction and Fluid Flow Program, this system is solved
directly by Gaussian elimination using LU deccomposition.

PETROPHYSICAL DATA REQUIRED
FOR NUMERICAL EXPERIMENTS

To solve the system of equations represented by (6-66), porosity and permeability
values are necessary properties of each grid cell. Table 6-1 contains data for
porosity and effective stress, and Table 6-2 contains data for permeability. Data
from both tables are provided internally in the program.
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Table 6-1 Coefficients for exponential porosity-effective stress function adapted from
Schneider and others (1991), that are supplied internally to Program 24,
Compaction and Fluid Flow Program.

Reference Reference Effective
Porosity Stress in MPa
North Sea sands (Brent) 0.43 27
North Sea shales (Jurassic) 0.58 18
Mahakam Delta sands 0.50 37
Mahakarn Delta shales 0.45 26

Porosity is calculated as a function of effective vertical stress, which is the
difference between the lithostatic pressure (total stress) of a specific grid cell and
its fluid pressure:

(Prien—P) 5 ;
¢, = drexp [—0’} (6-67)
Gek
whereas permeability is calculated as a log-linear function of porosity:
(a9, )
kr‘,j = /10 i {6-68)
where: k = lithology indicator for sand cr shale.

After the fluid pressure potential has been solved over the grid, flow velocities
can be calculated for each grid cell. Pressures are determined at cell boundaries to
get the x- and z-velocity components in the center of each celi:

ki [Pij+05—Pij-os
Vaij = ¢:‘ jp,[ Ax :| (69
v = ki |:P:'+0.5, j _Pi—O.S.J} (6-70)
S Az;;

Table 6-2 Coefficients for log-linear porosity-permeability function adapted from Bethke (1985)
that are supplied internally to Program 24, Compaction and Fluid Flow Program.

Anlisotropy

factor £, a b
Sand 04 -13 2
Shale 0.1 -19 8
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Table 6-3 Example input for Program 24, Compaction and Fluid Flow Program.
1stline:
Number of columns in cross section <10>
Number of layers that are deposited <b>
Spacing of columns in m <10000>
2nd line:
Density of water in kg/m3 <1027>
Density of solid sediment in kg/m3 <2650>
Viscosity of water in cP <1.0>
3rd line:
Initial basement topographic elevation for each column in m (datum is sea level)
Second part of input consists of four lines tor each sediment layer that are to be
deposited in same sequence, and are read In as follows:
1st line:
Time interval represented by sediment <1.0>
layer in millions of years
2nd line:
Thickness of layer of each column in m <100>
(thickness must be > 0}
3rd line:
Water depth of layer at time of deposition <60>
for each column in m
4th line:
Composition of layer for each column, <l>
where 0 = sand and 1= shale
Then the velocity magnitude Ivl and its direction, o, can be determined:
[ 2 2
[Vid = &Vt V5 (6-71)
v.x
tano, = — (6-72)
v
Z
Data that the user must supply as input for the program consist of the grid
specifications, including the grid size and grid spacing, properties such as fluid
density and viscosity, initial basement topography, and specifications for the sedi-
mentary layers, including their initial thicknesses and composition (Table 6-3).
Cutput (Table 6-4) consists of a set of properties over the grid for each time step,
including elevations, thicknesses, porosities, permeabilities, fluid pressures, and
flow directions.
Table 6-4  Example program output from Program 24, Compaction and Fluid Flow Program. Program

writes out following variables for evolving grid that represents vertical section through
basin for each timestep:

Topographic elevatlons of each grid cell In m

Porosity

Vertical intrinsic permeability in millidarcies (md)

Lithostatic pressure or overburden load in megapascals (MPa)
Fluid pressure In MPa

Flow velacities in mm/fyear

Flow directions in degrees counterclockwise from north
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Table 6-5
Input file for Experiment 6-1.

109 10000

1025 2650 1.00

0 0 0-50-100-100 50 O O O
1

i

00 10 0 1 1 1
0o 0 00
00 g 00

oo
oo
oo
cod

0
0
0

-
Q

0 30 40 40 3 05

Qo0

2 0 30 1
00 0O0O0CO0 0
000 00O 0

[ —]

3
10 20 50 100 100 100 100 50 20 10
100 100 100 100 100 100 100 100 100 100
1111111111
2
10 20 50 100 100 100 100 50 20 10
100 100 100 100 100 100 100 100 100 100
1111111111
3
10 20 50 100 100 100 100 50 20 10
100 100 100 100 100 100 100 100 100 160
11111111114
5
10 20 50 100 100 100 100 50 20 10
100 100 100 100 100 100 100 100 100 100
1111111111

8
10 20 50 100 100 100 100 50 20 10
100 100 100 100 100 100 100 100 100 100
1111111111
10
10 20 50 100 100 100 100 50 20 10
0 000ODUO0OOGOGOTDO
0O 0O0OOOOOOOOUO

15

10 20 50 100 100 100 100 50 20 10
00 00O0OTODODODT DO
00 00CO0O0CO0O0OTUOO0

EXPERIMENTS WITH THE PROGRAM

Two simplified hypothetical simulation experiments are pre-
sented to demonstrate the effects of initial geometry, sedimen-
tation rates, and sediment type on the evolution of pore fluid
pressures, flow directions, and velocities in basins. Although
synthetic, the experiments treat two common types of basins,
where compaction and dewatering are important scientifically
and economically (Tissot & Welte 1982). The first involves a
“failed” rift (Experiment 6-1), and the second involves a delta
building out over a continental margin (Experiment 6-2).

These experiments might be regarded as extremely sim-
plified representations of basins such as the North Sea and the
Gulf of Mexico adjacent to the Mississippi delta. The cross
sections in the two experiments involve only ten columns, so
that the input files and computing times are short. There is no
lateral variation in sediment composition in the failed rift
experiment (Experiment 6-1}, and only limited lateral varia-
tion in the delta experiment (Experiment 6-2). Furthermore,
there is no active structural deformation such as block faulting
or growth faulting, which are sometimes important in actual
basins. Nevertheless, the experiments show that sediment
composition and rates of deposition may have significant
effect on pore-fluid overpressures and motions in basins.

Experiment 6-1: Hypothetical Failed Rift

Experiment 6-1 involves the hypothetical failed rift. Its input
(Table 6-5) reflects three distinct developmental phases,
namely (1) an initial rift phase in which relatively permeable
terrestrial sediments were deposited (0 to 2 million years), (2)
a main rift phase during which there was rapid subsidence
coupled with deposition of thick sequences of shale (3 to 5
million years), and (3) an abandoned rift phase involving
moderate sedimentation rates in which mixtures of sandstones
and shales were deposited (6 to 31 million years).

With regard to pore-fluid expulsion and development of
overpressures, the fluid pressures at the outset are initially
hydrostatic, but rapidly increase in shales during deposition
(Color Plate 6-1), with fluid pressures markedly in excess of
hydrostatic (Figure 6-3). Overpressures are accompanied by
undercompacted sands in the lower part of the sequence (Fig-
ure 6-4). With the passage of time, however, there is gradual
release of overpressures as deposition rates decline as the rift
system is progressively abandoned (Color Plate 6-2).
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Figure 6-3 == === |jthostatic Pressure
Experiment 6-1 (failed-rift experiment): Plot of ———s— Fluid Pressure |
pressure in megapascals versus depth in meters for 0
center column of grid section representing basin. =—-&-- Hydrostalic Pressure sand
Composition of sediment in column is shown
schematically on right side of plot. Plot pertains te end
of experiment, after 46 million years have elapsed. i shale
Lithostatic pressures due to sediment load are shown sand
with solid diamonds, hydrostatic or normal #luid
pressures are shown with open squares, and fluid
pressures obtained in experiment are shown with solid
squares. Note that while hydrostatic gradient remains 00 7
constant, lithostatic pressure varies as result of high
compactibility of shales, and fluid pressures obtained £
in experiment are markedly higher than hydrostatic =
within thick shale unit, as well as in basal sands. F&. —
3 shale :
1000 '3
sand
1500 — T T T T T
¢] 10 20 30
Pressure (MPa)
=8 Porosity With Overpressure
===4¢===Porosity Without Overpressure
0 -
sand
4 shale
sand
500
E
=
= -
a8 shale
1000 Figure 6-4
Experiment 6-1 (failed-rift experiment): Plot of porosity
versus depth for center column of grid section
representing basin. Composition of sediment in column
i is shown schematically on right side of plot. Plot pertains
to end of experiment, after 46 million years have elapsed.
Porosities under hydrostatic conditions (without
| sand overpressures) are denoted with solid diamonds, whereas
porosities under conditions in experiment in which
1500 — T T overpressures occur, are shown with open squares. Note
0.1 0.2 0.3 0.4 0.5 that undercompaction is greatest within thick shale
interval, but sand at base of column is also
Porosity undercompacted.
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Table 6-6

Input file for Experiment 6-2.

105 10000
1025 2650 1.00
0 0 -1¢ -20 -50 -80 -90-100-100-100

20 20 30 50 80 106 50 30 20 10
0 0 -1¢ -20 -50 -80 -90-100 -100 -100
0 001111111

20 20 20 &0 100 300 500 300 200 100
0 0-10 -20 -50 -8B0 -90-100 -100 -10C
0001111111

20 20 20 50 100 300 500 500 300 100
0 0 -10 -20 -50 -80 -90-100 -100 -10¢
0000111111

20 20 20 50 100 260 300 500 500 300
0 0 -10 -20 -50 -80 -90-100 -100 -100
0 ¢ 00111111

20 20 20 20 50 100 300 500 500 500
0 ¢ -10 -2¢ -50 -80 -90-100 -100 -100
00 0 0O

11111

Experiment 6-2: Hypothetical Rapidly Growing Delta

Experiment 6-2 involves prograding wedges that create a delta complex contain-
ing thickened prodelta muds and shales that form partly in response to increased
subsidence toward their downdip components (Table 6-6). With respect to pore-
fluid expulsion and the evolution of changes in fluid pressures, there is steady
increase in the degree of overpressure in the shales (Color Plate 6-3). We note,
also, that there is topographically driven flow in the recharge area.

We can alter the system by incorporating a static vertical “fault.” This is
achieved by simply changing a grid column within the shales so that it is repre-
sented by sand (which is highly permeable) instead of shale, thereby creating a
conduit for flow. While somewhat unrealistic because a very wide zone is created,
the effect would be similar even if narrower and more realistic. Flow is focused
within the column of sand and overpressures are greatly reduced (Color Plate
6-4).

SUMMARY

Compaction and dewatering of sediment and other porous materials can be treated
as integral processes. Darcy's law provides the starting point in our consideration
of flow through porous materials. By linking Darcy's law with the Bernoulli equa-
tion, which represents the forces acting on a volume of fluid in terms of hydraulic
heads, Darcy's law yields a momentum equation which successively can be linked
with compaction. If compaction due to the overlying load is to occur, any change
in effective stress imposed by the overlying load must be compensated by change
in pore-fluid pressure. This relationship permits changes in porosity to be defined
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as a function of changes in pore-fluid pressure, leading to the classical equation of
consolidation. \

The motions of both a compacting solid and the pore fluid being expelled can
be represented in a spatial coordinate system, which in our application is simpli-
fied as a two-dimensional grid that forms a vertical section through an evolving
sedimentary basin. By obtaining a general diffusion equation for the pore-fluid
motions in the basin, we can prepare a series of numerical solutions for it after jt
has been transformed into finite form. The numerical solutions are provided at a
series of timesteps that represent successive increments of time in the evolving
basin. We supply initial and boundary conditions for the numerical solutions, and
provide functions that relate porosity to effective stress, and permeability to
porosity.

The numerical solutions are graphically displayed, providing us with a series
of snapshots of the evolving basin as compaction takes place in response to load,
and pore fluid moves through the sequence of beds in the expulsion process. Con-
tours show changes in transient overpressures as the overlying load is partially
transmitted to the moving pore fluid.
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