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[1] In this work, extensive numerical simulations have been performed to assess the
hydrodynamic and morphodynamic behavior of a river jet debouching in a large quiescent
water body. A refined three-dimensional grid has been used to capture the transition zone
between a stable jet and an unstable meandering jet. The model results show that the
stability number S, which is a function of friction and river mouth aspect ratio, and the
mouth Reynolds number are the two parameters that describe the stable/unstable character
of the jet. From a morphodynamic point of view, a stable jet always tends to form a mouth
bar. However, a decrease of the stability number together with jet instability increase the
delivery of sediments to the jet margins, favoring the formation of subaerial levees and
elongated channels. Frictional effects play a major role to set the distance at which the
mouth bar becomes stagnant. The importance of the stability number in setting depositional
patterns at the river mouth is larger than other variables (i.e., momentum of the jet and
potential vorticity) and therefore should be considered in the design of restoration schemes
for deltaic land.
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1. Introduction

[2] The planform of a delta and its distributary network
are set by the hydrodynamics and depositional patterns at
the mouths of distributary channels. In the absence of signifi-
cant waves and tides, the hydrodynamics usually consists of
a bounded plane turbulent jet (Figure 1). The jet determines
the sediment particle flow paths, and the evolving sediment
bed influences the jet. This morphodynamic interaction then
sets the number of distributaries, the rugosity of the shore-
line, and ultimately the delta planform [Edmonds and Sling-
erland, 2007, 2008; Jerolmack and Swenson, 2007;
Edmonds et al., 2009; Jerolmack, 2009; Hoyal and Sheets,
2009; Martin et al., 2009; Chatanantavet et al., 2012].
More recent studies have investigated the effect of wind
waves [Nardin and Fagherazzi, 2012; Nardin et al., 2013]
and tides [Leonardi et al., 2013] on jet hydrodynamics, but
here we restrict our discussion to exclude them.

[3] It is unfortunate that most laboratory investigations of
plane jets debouching into quiescent bodies are of the

unbounded type, i.e., the experiments are performed in a
way to minimize the effect of the bounding walls. Measure-
ments are usually taken in a zone spanning from the orifice
to x/h 5 1, where x is distance along the jet axis and h is the
distance between the bounding surfaces [e.g., Bradbury
1965; Goldschmidt and Young, 1975; Everitt and Robins,
1978; Ramaprian and Chandrasekhara, 1983, among
others]. Dracos et al. [1992] pointed out at the time of his
work, that few studies were performed on bounded plane
jets especially for x/h » 1. Foss and Jones [1968] and Holde-
mann and Foss [1975], in fact, studied bounded rectangular
jets, but only for x/h< 10. Also, these earlier studies only
consider orifice geometries with aspect ratios B/h smaller
than 2 where B is channel top width. These ratios are smaller
than observed in typical delta distributaries. Only recently
have experiments been conducted on bounded planar jets
with B/h » 1 [Rowland et al., 2009, 2010].

[4] The turbulence characteristics of these narrow
bounded jets differ from those of unbounded ones [Dracos
et al., 1992]. Using the depth as a scaling parameter, Draco
et al. [1992] defined three fields for a bounded jet : near (x/
h< 2), middle (2< x/h< 10), and far (x/h> 10). In the near
field the flow is essentially the same as a classical
unbounded jet, i.e., the effect of the bounding walls is not
yet felt and the x-directed velocity u is uniform along the
vertical axis z. In the middle field, secondary flows are
present that affect the entire depth (u is nonuniform along
z). For x/h> 10, the intensity of the turbulence is roughly
constant, the jet begins to meander, and it is flanked by two
set of counter-rotating vortices. The influence of the bound-
ary is clearly seen in the turbulence spectrum of a bounded
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jet. In the near field the spectrum at small wave numbers is
typical of a three-dimensional cascading turbulent flow
with a 25/3 wave number dependence [Goldschmidt and
Young, 1975]. This is also the case of the near field in a
bounded jet, but in the far field the energy transfer at small
wave numbers follows a 23 wave number dependence
[Dracos et al., 1992; Landel et al., 2012] typical of quasi-
two-dimensional turbulence characterized by an enstrophy
cascade [Batchelor, 1969]. This means that part of the tur-
bulent energy is transferred from the inertial subrange to
smaller wave number, i.e., to larger scale eddies. This tur-
bulent energy transfer leads to unstable jets due to the for-
mation of large-scale counter-rotating eddies around which
the mean flow meanders.

[5] The transition from a stable, planar jet to an unstable
meandering jet should be an important threshold in delta
growth, because it would change the depositional patterns
at the river mouth [e.g., Rowland et al., 2010]. Linear sta-
bility analysis is a typical theoretical approach to defining
the threshold and general stability behavior of shallow jets,
wakes, and mixing layers [Jirka, 1994; Socolofsky and
Jirka, 2004; Chen and Jirka, 1997; Jirka, 2001; van
Prooijen and Uijttewaal, 2002]. In this approach a parallel
flow is considered, i.e., spreading of the jet is neglected.
The shallow water equations are linearized, which leads to
a modified Orr-Sommerfeld equation, including turbulence
viscosity (mT) and bottom friction (cf) as dissipative terms.
Analyses of this type indicate jet stability has a strong
dependence on friction and aspect ratio [Jirka, 1994]. This
is embedded in the stability parameter S for shallow jets:

S5cf
L

h
5

cf
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B

h
(1)

where h is the water depth, L is a jet length scale which for
expanding jets we take to be equal to half mouth river width
B [Jirka, 1994], and cf is the friction factor in the formula-
tion s5qu2cf =2, with s the bottom shear stress and u the
local one-directional velocity (note that cf can also be written
as a function of the Chezy coefficient C usually adopted in
shallow water simulations, i.e., cf 52g=C2). Below a critical
jet stability parameter, Sc, jet instabilities grow unimpeded;
above this threshold instabilities are dampened by bottom
friction. Theory and experiment suggest Sc ranges from 0.06
to 0.6 [Uijttewaal and Booij, 2000; Jirka, 2001; vanProoi-
jen and Uijttewaal, 2002; Socolofsky and Jirka, 2004].

[6] The influence of jet instability on sedimentation pat-
terns at a river mouth has not been fully explored, a notable

exception though is the recent work by Rowland et al.
[2010]. In this work, we are motivated by the following con-
siderations: first, to our knowledge, no detailed numerical
investigations of the transition between stable and unstable
shallow jets for field-scale river mouths have been carried
out. Second, most experimental investigations of shallow
jets [e.g., Rowland et al., 2009, 2010] are limited to a single
geometrical configuration. More experiments are needed
with different river mouth aspect ratios, friction values, and
incoming discharges to cover the entire stability parameter
space. Third, the available analytical solutions for shallow
jet dynamics [Borichansky and Mikhailov, 1966; Wright
and Coleman, 1974; Ozsoy, 1977; Ozsoy and Unluata,
1982; Ozsoy, 1986; Wang, 1984; Izumi et al., 1999;
Ortega-S�anchez et al., 2008] cannot take into account the
coupled evolution of the flow field and the bottom, and can
only predict the initial depositional pattern [Ozsoy, 1986;
Syvitski et al., 1998]. Moreover, they cannot capture jet
meandering but only predict time-averaged quantities.

[7] The aim of this paper is to define a threshold for insta-
bility (jet meandering) of a turbulent, bounded, high aspect
ratio jet and to explore how frictional effects and jet instability
coevolve with the patterns of sedimentation at the distributary
mouth. We employ a three-dimensional model, Delft3D, that
is presented in section 2. Section 3 describes the hydrody-
namic results of a jet debouching into a quiescent body of
water, from which a stability diagram is deduced. Section 3.2
shows the results of morphodynamic simulations and effect of
instability on the depositional patterns. Discussions and con-
clusions are drawn in sections 4 and 5, respectively.

2. Numerical Model

[8] The numerical model chosen for our analysis is the
hydrodynamic and morphodynamic Delft3D model [Del-
tares, 2013]. Here we present the main characteristics of
the model together with the model setup for this work. Fur-
ther details on the model can be found in Deltares [2013]
and Lesser et al. [2004].

2.1. Model Description

[9] Delft3D solves the fluid flow, sediment transport,
and morphological evolution in a coupled fashion. The
governing equations are numerically solved in sigma-
coordinates, but are here introduced in Cartesian coordi-
nates for simplicity. Defining a coordinate system (x, y, z)
with the x axis longitudinal, the y axis transversal, and the z
axis vertical upward, the system of governing the three-
dimensional equations for fluid flow read:
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Figure 1. Sketch of a planar bounded jet.
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where U, V, W are the velocities in x, y, and z directions,
respectively. p is the fluid pressure, q is the water density,
g is the gravity acceleration, mH and mV are the horizontal
and vertical eddy viscosity, respectively.

[10] Bed load transport is computed with the formula of
van Rijn [2007], while the suspended load transport is cal-
culated by solving the three-dimensional diffusion-advec-
tion equation:
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where c is the suspended sediment mass concentration, ws

the hindered sediment settling velocity and es,x, es,y, es,z are
the sediment eddy diffusivities along the three coordinate
axis directions.

[11] The Reynolds stresses are modeled by using the
eddy viscosity concept. For 3-D shallow water flow the
stress tensor is anisotropic. The horizontal eddy viscosity
coefficient, mH, is usually much larger than the vertical
eddy viscosity mV. The vertical coefficient is computed by:

mV 5mmol1m3D (7)

in which mmol is the molecular viscosity and m3D is the vis-
cosity term modeling three dimensional turbulence. In this
work, m3D is computed by the three dimensional k-e model.
Note that the molecular viscosity is usually various orders
of magnitude smaller than the eddy viscosity and can be
neglected. The horizontal viscosity coefficient is the super-
position of three terms [Uittenbogaard et al., 1992; Uitten-
bogaard and van Vossen, 2004]:

mH5mmol 1m3D1mSGS (8)

[12] The third term is due to subgrid scale turbulence,
i.e., it is associated with the contribution of horizontal tur-
bulent motions and forcing that are not resolved by the hor-
izontal grid. It is modeled with the horizontal large eddy
simulation technique (HLES) presented in Uittenbogaard
and van Vossen [2004], to which the reader should refer for
further details.

[13] The choice of using a numerical model that employs
a large eddy simulation technique relies on the fact that
direct numerical simulations are not feasible for domains
with the size of tens or hundreds times the river mouth
width. Moreover, it is doubtful that horizontal statistically
averaging models would be able to capture large coherent
structures generated by internal transverse shear instabil-
ities [Jirka, 2001]. LES models appear more appropriate
for this purpose [Hinterberger et al., 2007, 2008; Rodi,
2010]. Moreover, LES has been shown to correctly
describe the turbulent characteristics of jets [see Foysi
et al., 2010, among others]. As for the particular horizontal

LES approach (HLES) implemented in the Delft3D model,
it also appropriately describes large turbulent structures
that form by shear instability [Kernkamp and Uittenbo-
gaard, 2001]. Moreover, Gerritsen et al. [2007] showed
that Delft3D succeeds in reproducing the mean streamwise
velocity U, root mean square ıU0ı, and the lateral momen-
tum flux, as measured in the mixing layer experiment of
Uijttewaal and Booij [2000].

[14] In a three-dimensional LES model for shallow water
problems, the mesh size should be chosen in such a way
that the cutoff wave number (proportional to the inverse of
the turbulent eddy length scale) lies in the inertial subrange
[van Prooijen, 2004]. Therefore, the horizontal resolution
of a LES model should at least be of the order of the water
depth, so that the large-scale anisotropic turbulence is fully
resolved [van Prooijen and Uijttewaal, 2009]. This require-
ment still implies long computational times, because in
order to resolve vortices with the length scale of the depth,
the mesh size should then be at least an order of magnitude
smaller than the water depth [van Prooijen, 2004]. Delft3D
overcomes this limitation by using a dedicated subgrid
model for fine-scale 2-D motions not resolved by the coarse
horizontal grid [Kernkamp and Uittenbogaard, 2001; Uit-
tenbogaard and van Vossen, 2004]. The details of the
HLES model implemented in Delft3D can be found in Ker-
nkamp and Uittenbogaard [2001], Uittenbogaard and van
Vossen [2004], and Deltares [2013].

2.2. Model Setup and Boundary and Initial Conditions

[15] The computational domain is rectangular and
refined in the region where the jet forms (Figure 2). More-
over, we took advantage of the multidomain capability of
Delft3D. In order to avoid undesirable boundary reflections
and to still keep the computational time reasonably small,
the fine domain was coupled with a larger domain 5 times
coarser in both x and y directions. In this way, perturbations

Figure 2. Computational domains and boundary condi-
tions. The fine domain (A) is coupled with a domain (B)
that is 5 times coarser in both x and y directions.
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from an oscillating jet were almost entirely dissipated by
the time they reached the boundaries.

[16] Seven computational layers are used in the vertical.
Note that the vertical momentum (equation (4)) employs the
hydrostatic approximation, as usually done in coastal mod-
els. In our modeled jets, the horizontal length scale of the
coherent structures forming in the flow field is of at least an
order of magnitude larger than the vertical length scale (i.e.,
the water depth), and this guarantees that vertical accelera-
tion can be neglected as compared to gravity (see Appendix
A). Due to the hydrostatic approximation, the vertical veloc-
ities in our simulations are generated from continuity and not
from the vertical momentum equation. Therefore, the utiliza-
tion of seven vertical layers allows the presence of vertical
velocities and recirculation in the coherent structure, similar
to those measured by Geyer [1993] around headlands, thus
avoiding the pitfalls of a purely 2-D solution. In fact purely 2-
D solutions can overestimate the rotation rate, yielding higher
vorticity and a smaller diameter of the coherent structure
[e.g., Signell and Geyer, 1991].

[17] The initial bathymetry consists of a coastal region
on the left boundary with elevation of 15 m amsl. A rec-
tangular channel is carved into the coast with depth and
width that vary among runs. The receiving basin has no
slope and its depth is the same as the channel. Small
amplitude (5 0.05h) random disturbances are added to the
average depth to simulate various natural sources of pertur-
bation. A spatially constant average depth allows us to
compare model predictions with results from physical
experiments that employ a horizontal bed [Giger et al.,
1991; Dracos et al., 1992; Rowland et al. 2009, 2010].
Moreover, Edmonds and Slingerland [2007] found that the
computed distance of the aggrading river mouth bar from
the inlet is basically independent of the basin slope. The
standing body of water into which the jet debouches is qui-
escent and devoid of waves, tides, and positive buoyancy
forces (i.e., constant density).

[18] The input boundary conditions consist of a steady
river discharge through the channel on the left boundary
(Figure 2). In the morphodynamic simulations, a suspended
concentration and bed load of a single grain size are pre-
scribed in equilibrium with the flow. The grain size is how-
ever allowed to vary among the different simulations. At
the other three boundaries a steady water elevation is pre-
scribed (Figure 2). The thickness of the erodible sediment
available at the bottom is 20 m everywhere, and the initial
sediment had the same grain size of the sediment entering
the domain. A spin-up time, varying among experiments,
has been used before allowing any morphodynamic evolu-
tion, in order to reach fully developed hydrodynamic and
sediment transport conditions.

[19] In each simulation, the time step has been varied in
order to satisfy stability requirements as specified in Del-
tares [2013]. The default HLES parameters presented in
Kernkamp and Uittenbogaard [2001] have been used. In
LES models the upstream inflow boundary should contain
velocity perturbations in order to represent the upstream
turbulence properties in a realistic manner. We did compu-
tational experiments both prescribing and neglecting kine-
matic turbulent perturbations [Van projieen and Uijttewal,
2009], and we found no remarkable differences on the
onset of instability or on the characteristics of the meander-

ing jet and coherent structures. This is probably because
the shear that establishes between the quiescent water in
the basin and the high speed jet is large enough to develop
hydrodynamic instability. A similar behavior was observed
by Hinterberger et al. [2007], who noticed in a 2-D dimen-
sional LES model that no backscatter model generating
artificial random fluctuation was needed to trigger instabil-
ity in a flow past a circular cylinder, while it was necessary
for a mixing layer between two flows having velocities of
the same order of magnitude.

[20] The morphological scale factor has been varied
from a minimum of 1 to a maximum of 800, because the
time scale of deposition varies with the jet velocity, the
depth of the basin, and the type of sediment.

[21] The experimental design consists of about 180
numerical experiments divided into two sets: those in
which the river discharge was sediment-free and the bed
was fixed, and those carrying sediment over a loose bound-
ary. In both sets the width of the channel mouth varies
from 1 to 1500 m, the average channel depth from 1 mm to
30 m, the friction coefficient from 25 to 75 m1/2 s21, and
the velocity at the mouth from 0.5 to 4 m/s. While clearly
nonnatural, the small values allow comparisons to experi-
mental results. The model jets were visually classified as
meandering and therefore unstable, or time-invariant and
stable.

3. Results

3.1. Hydrodynamic Stability of the Jet

[22] A jet can be destabilized either by decreasing the
stability number or increasing the Reynolds number (Figure
3). The unstable jet is characterized by a meandering flow
flanked by counter-rotating vortices (Figure 4). The results
are similar to the laboratory experiment of Landel et al.
[2012, Figure 8]. Note that the comparison is only qualita-
tive since in Landel et al. [2012] experiment, water was
flowing against gravity from the bottom to the top of the
experimental apparatus, and flow was bounded by walls at
both sides.

[23] Jirka [1994] showed that the stability of the jet
should not only depend on S but also on the Reynolds
number. Chen and Jirka [1997] found for shallow wakes
that the depth-dependent Reynolds number Reh 5 Uh/
mT 5 103 is the limit above which viscous effects can be
neglected. Socolofsky and Jirka [2004] claim that above
that limit the development of the large-scale instabilities
does not depend on the Reynolds number. In Jirka [1994]
and Socolofsky and Jirka [2004] analysis results are
shown as a width-dependent Reynolds number
Re

0
B5UB=tT , that is spatially constant since the flow is

approximated as parallel. While this is probably the best
choice in the stability analysis problem, Re

0
B is not a use-

ful governing parameter from an engineering point of
view, because in real geophysical flows U, B, and tT all
vary along the jet and the eddy viscosity also depends on
the closure model employed. Therefore, following Dracos
et al. [1992], we here define a ‘‘river mouth’’ Reynolds
number (ReB) using the molecular viscosity m, the width
of the channel B, and the cross section-averaged velocity
U0 at the mouth:
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ReB5
U0B

m
(9)

[24] The critical stability number Sc has not yet been
determined over ranges of ReB values that are realistic for
both laboratory scale and river mouths at the field scale.
Here we conduct a series of experiments and the simulated
turbulent jets representing different combinations of S and
ReB are visually classified as either unstable or stable (Fig-
ure 5). We determine a linear separation line between the
two groups by mean of a linear discriminant analysis
(LDA). The Fisher’s linear discriminant, widely used as a
linear classifier for pattern recognition [McLachlan, 2004]
is applied to all the data providing the following relation-
ship in the log-log space:

log Scð Þ522:8710:235 log ðReBÞ (10)

[25] This separation line is the continuous black lines
drawn in Figure 5. In the linear space, the separation line
reads:

Sc51:3 � 1023ReB
0:235 (11)

[26] In order to assess the quality of the classification,
we compute the Matthews correlation coefficient MCC
[Baldi et al., 2000]. MCC 5 1 indicates a perfect predic-
tion, MCC 5 0 a prediction that is no better than random
prediction and MCC 5 21 indicates that there is total

Figure 4. Example of unstable jet for a river mouth
150 m wide and a basin 6 m deep (C 5 65 m1/2 s21;
U 5 2 m/s). Colors indicate the magnitude of the velocity
while arrows indicate the direction of the velocity vector.
The unstable jet is characterized by a main meandering
flow flanked by counter-rotating vortices.

Figure 5. Stability diagram for a shallow jet (B� h)
debouching in quiescent waters. The red circles indicate
unstable (i.e., meandering) jets ; the black squares indicate
stable jets, with no large-scale horizontal coherent struc-
tures. The continuous and dotted lines represent equations
(11) and (12), respectively. ‘‘x’’ represents the experimen-
tal data from Rowland et al. [2009], while the blue
line ending with blue circles represents the data of the tie
channels in the Fly River system (Papua New Guinea) as
presented in Day et al. [2008] (see section 4, for a
discussion).

Figure 3. Transition from a stable turbulent jet to an unstable turbulent. The jet can be destabilized
either by decreasing the stability number S (equation (1)) or by increasing the Reynolds number ReB

(equation (9)).
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disagreement between prediction and observation. The
classification in Figure 5 provides a value of MCC equal to
0.84, indicating a good correlation. Moreover, we compute
the maximum error as the maximum distance in the log
space from a point that falls in the wrong class and the lin-
ear classifier (equation (10)) and we draw two transition
lines (dashed lines in Figure 5) by horizontally shifting
equation (10) by the horizontal error obtaining:

SUP
c 50:9 � 1023ReB

0:235

SDOWN
c 51:9 � 1023ReB

0:235

ð12aÞ

ð12bÞ

8<
:

[27] Equations (12) are the dotted lines in Figure 5. In
this way a transition region is identified, in which both sta-
ble and unstable configurations are present, while in the sta-
ble and unstable region only simulation of the right class
are present.

[28] To assess the sensitivity of the results we repeated
some experiments and varied the time step, the grid resolu-
tion, and the amplitude of the random disturbances at the
bottom. We found that the results of Figure 5 do not signifi-
cantly depend upon the time step or the grid resolution,
although some small dependence was present in the region
defined as the transition zone (Figure 5), where small varia-
tions in the initial conditions can or cannot trigger instabil-
ity. In the stable and unstable regions, the stability
character of the jet is insensitive to time step and grid
resolution.

[29] The areas of the plot not covered by data are charac-
terized by values of ReB and S outside the range of natural
deltas and tidal inlets. In particular, the region on the upper
left of the plot is characterized by B/h values equal to or
lower than 1, and therefore do not belong to the category of
shallow jets. Note that if instability occurs in this region,
coherent structures are likely three-dimensional. However,
in this work we focus on two-dimensional instability, i.e.,
the vertical confinement of the jet in a narrow gap changes
the 3-D structure of the turbulence and a quasi-two-
dimensional inverse cascade occurs that allows large eddies
to grow [Landel et al., 2012]. In fact, in Dracos et al.
[1992] the depth to width ratio was varied and a meander-
ing jet was observed for B/h 5 1/16–1/2, while for B/h 5 1/
32 the jet was meander-free [Dracos et al., 1992, Figure 5].
On the other hand, if B/h is too large (i.e., the width too
large) shear instability does not occur [Chen and Jirka,
1998] because friction suppresses any perturbation of the
straight jet.

3.2. Morphodynamics of Stable and Unstable Jets

[30] The preceding results coupled with experimental
and field investigations [Rowland, 2007; Rowland et al.,
2009, 2010] indicate that jet instability is present at many
delta distributary mouths. Here we investigate how fric-
tional effects and jet stability affect the morphology of
mouth bars and subaqueous levees. Edmonds and Slinger-
land’s [2007] performed a series of experiments with
Delft3D showing that as a channelized flow debouches into
a quiescent water body, a mouth bar forms as a result of jet
spreading, reduced centerline velocity, and sediment set-
tling. The mouth bar aggrades and progrades seaward, until
its height rises to about 60% of the water depth. At this

point, only vertical aggradation occurs, eventually trigger-
ing a channel bifurcation [Edmonds and Slingerland,
2007]. Their results indicated that the distance of the bar
from the river mouth, Lb, made dimensionless by the depth
h, follows a power law:

Lb

h
5b1Mb2 (13)

in which b1 5104, b2 5 0.23, and M is the jet momentum
flux relative to area grain weight:

M5
qBU2

r2qð ÞgD50Bmax
(14)

where qs is the density of quartz and D50 the median parti-
cle diameter. Equation (13) indicates that a jet carrying
coarser sediment forms a bar closer to the river mouth,
while an increase in momentum and depth forms a more
distal bar. Edmonds et al. [2011] found that the value of the
exponent b2 changes for different deltas, perhaps due to the
presence of other processes. When the jet is unstable, the
increase of transversal eddy diffusivity due to the turbulent
eddies shedding from the mouth is believed to enhance
sediment deposition at the jet margins, promoting levee
growth [Rowland et al., 2010]. Mariotti et al. [2013]
showed by means of a dimensional analysis and two-
dimensional numerical simulations that for a given mouth
geometry and velocity of the jet there is an optimal diame-
ter of sediment for which eddy diffusivity is maximum and
levees’ growth is favored.

[31] Based on these results, we suggest that frictional
effects and jet stability also play an important role in the
morphodynamics of subaqueous levees and mouth bar
growth. River mouth sedimentation can be viewed as a com-
petition between mouth bar growth and subaqueous levee
growth [Rowland et al., 2010] because for a given sediment
discharge, faster levee growth will occur at the expense of
mouth bar growth (and vice versa). Jet instability increases
the rate at which sediment is extracted from the jet core and
delivered to the margins due to the enhanced turbulent sedi-
ment diffusion from the vortical meandering structure [Row-
land et al., 2010]. If subaqueous levee growth dominates,
then such a scenario should lead to greater distances to the
mouth bar since the mouth bar sedimentation rate is lower,
and fast levee growth confines the flow and forces the mouth
bar to prograde basinward. Thus, for a given sediment dis-
charge, an unstable jet should have faster levee growth and
greater distances to the mouth bar.

[32] To test this idea, we start from the hydrodynamic
simulations presented in section 4.1, but now add an
incoming sediment load in equilibrium with the channel
flow. Four different diameters have been used: 100, 200,
500, and 1000 lm. Following Edmonds and Slingerland
[2007], we measure the distance Lb from the bar crest to
the mouth when the height of the bar reaches 60% of the
water depth, which is roughly when bar stagnation occurs.

[33] We decided to remove the dependence of the dimen-
sionless momentum of the jet on B (and Bmax) and to make
Lb dimensionless with B. Our model predictions indicate
that the dimensionless distance to river mouth bar, Lb/B,
increases in proportion to the dimensionless jet momentum
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flux M0 and decreases in proportion to the stability factor S
(Figure 6). The plot also shows a three-dimensional linear
least squares (LLSQ) fit, characterized by a coefficient of
determination R2 5 0.846, from which the following power
law is derived:

Lb

B
5a1Sa2 M

0 a3
with M

0
5

qU2

r2qð ÞgD50
(15)

in which a1 5 1.48, a2 5 20.58, and a3 5 0.08. Note that in
absolute value, the exponent in S, is much larger than the
exponent in M. These results extend Edmonds and Slinger-
land’s [2007] contribution, and reveal that frictional effects
and jet stability (as embodied in S) play even a more impor-
tant role than inertial effects and cannot be neglected when
predicting mouth bar distance. Note that the exponent b2 of
M in equation (13) is larger than the exponent b2 of M’ in
equation (15), because we removed the dependence of the
jet momentum on B.

[34] The length of the levees LL is an indicator of the
capacity of the jet to transfer sediments to its margins. We
define LL as the length of subaerial levees at the instant in
which the above condition on the bar height (5 0.6h) is sat-
isfied. Levees that are nonemergent at the time when flow
bifurcates around the mouth bar are more likely to be dis-
sected by the diverging currents. In Figure 6b, the dimen-
sionless values of LL as a function of M and S are plotted
for all the simulations. The scatter of data is higher than
Figure 6a, and this affects the value of R2 of the data set. It
seems that the jet momentum flux M’ does not uniquely
determine LL, and for different values of M’ and S the same
length of emerging levee may occur. The importance of jet
stability on the levee length clearly emerges in Figure 7,
where we fixed the geometrical configuration and flow
velocity (and thus M’) and varied only S by using four dif-
ferent Chezy coefficients ranging from 10 to 75 m1/2 s21.
By only varying S, the morphology of the deposits under-
goes a transition from a pronounced central bar with short
levees that are emerging only in proximity of the mouth, to

a configuration in which elongated levees emerge first and
the mouth bar eventually emerges to trigger a bifurcation.

[35] Table 1 displays the length of the emerging levee,
the mouth bar distance and the character of the jet (stable/
unstable) for different values of the stability number. In the
stable region, the length of emerging levees is zero, but by
only reducing the stability number, without destabilizing
the jet, the distance to the mouth bar increases. Only after
the jet begins to meander the dimensionless length of the
levee suddenly jumps to a large value, and then progres-
sively increases with increasing stability number. Note that
while LL suddenly increases when the jet becomes unstable,
the plot of mouth bar distance versus stability number does
not display any relevant discontinuity (Figure 8).

[36] Figure 9 shows the offshore (x directed) suspended
sediment transport rate Qs in the jet with increasing dis-
tance from the mouth. The downstream decrease in sus-
pended sediment transport indicates a loss of sediment in
the y direction. Because the sediment in the centerline of
the jet mainly deposits at the bar location, a decrease of
longitudinal sediment transport is a measure of diffusive
transport and deposition of sediments at the margins of the
jet. For small values of the Chezy coefficient the slope is
small, indicating that most of the sediment exiting the river
mouth reaches the final location of the bar. For larger val-
ues of C, the percentage of sediment making its way to the
final bar location is proportionally reduced.

[37] It has been shown in the experiments of Rowland
et al. [2009] and in the numerical investigations of Mariotti
et al. [2013] that an unstable jet has a larger transverse dif-
fusivity with respect to a stable jet and this leads to a larger
delivery of sediment to the jet margins. This behavior is
reproduced in our numerical simulations, showing a sudden
increase of the levees’ length with the transition from a sta-
ble to an unstable flow field (Table 1), and a larger trans-
versal flux of sediment with increasing S (Figure 9).
However, note that in all simulations jet instability did not
prevent the mouth bar from forming and becoming stag-
nant, but only delayed the time at which the bar formed.

Figure 6. (a) Dimensionless distance to river mouth bar, Lb/B, increases proportionally to the dimen-
sionless jet momentum flux M and inversely proportional to the stability factor S. The linear least squares
(LLSQ) planar fit is also shown. (b) Dimensionless length LL/B of subaerial levees shows a similar trend
with S and M but the data are remarkably more scattered. Points above the fitting surface are vivid blue,
while points below the surface are light blue.
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Also in Mariotti et al. [2013] simulations, bars always
formed, even for the simulations employing an ‘‘optimal’’
sediment diameter for levee formation. Note that the conse-
quence of estimating a wrong value of the Chezy coeffi-
cient seems to affect the mouth bar distance more than
considering a different d50. From Mariotti et al. [2013, Fig-
ure 8], we can deduce that Lb/B varies only marginally,
approximately from 13 to 17, when D50 is varied by more
than one order of magnitude (from 64 to 1094 lm). From
Figure 7 instead, Lb/B varies approximately from 4 to 47
when Chezy is changed from 20 to 75 m1/2 s21. This is
reflected in a higher exponent for the stability number than
for the momentum flux M’ (inversely proportional to d50)
in equation (15).

4. Discussion

4.1. Threshold for Jet Instability

[38] For a shallow mixing layer, linear stability analysis
provides values of the critical stability number Sc ranging
between 0.06 and 0.12 [vanProoijen and Uijttewaal, 2002].
For shallow jets, a value of Sc 5 0.69 is found under invis-

cid (Re!1) conditions, and it drops to about 0.5 for typi-
cal viscid conditions [Chen and Jirka, 1998; Socolofsky
and Jirka, 2004]. In our fully nonlinear viscous simula-
tions, we find lower values of Sc (Figure 5). It is difficult to
directly compare these results because our stability number
is defined with the width at the river mouth. The stability
analysis of Socolofsky and Jirka [2004], instead, is based
on the hypothesis of parallel streamlines (i.e., jet spreading
is neglected) and therefore the critical stability number
they propose should be read as a local value. However, in
the case of a spreading turbulent jet, the jet width increases
with distance from the inlet because of friction and lateral
entrainment of water. The turbulent flow field usually takes
some distance from the mouth (8–9B) to change from
purely three-dimensional to quasi-two-dimensional with
large horizontally oriented vortices [Rowland et al., 2009],
and at this distance, the jet width is larger than the river
width. Therefore, the effect of friction on jet stability is
twofold, and it is implicitly embedded in our mouth stabil-
ity number: first, a higher friction stabilizes the flow
because of increased dissipation even for parallel stream-
lines [Jirka, 1994]. Second, friction increases the spreading

Figure 7. Morphology of the deposits for four different values of the Chezy coefficients. ReB 5 3 3
107 and the corresponding critical value of the stability number is Sc 5 0.074 (B 5 15 m, h 5 3 m, and
U 5 2 m/s).

Figure 8. Plot of the mouth bar distance versus the stability number for three different velocities at the
mouth (0.8, 2, and 4 m/s). d50 is taken equal to 0.2 mm. The colored solid lines represent the best linear
regression fit. The vertical lines indicate the location of Sc, SDOWN

c and SUP
c from equations (11) and (12).
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of the jet [Ozsoy and Unluata, 1982; Nardin et al., 2013],
therefore leading to higher local values of jet width and
higher values of S thus further stabilizing the flow and pre-
venting the formation of a meandering pattern.

4.2. Comparison With Natural and Experimental
River Mouths

[39] To test these predictions, we plotted values from tie
channels in the Fly River system [Day et al., 2008] and
physical experiments of Rowland [2007, Figure 5]. Tie
channels have been recently recognized as important path-
ways that convey sediment from the main river to the flood-
plains [Day et al., 2008; Rowland et al., 2009], and are
usually single-thread channels. Moreover, an unstable
meandering jet has been documented when water flows
from the main river toward the oxbow lakes [Rowland,
2007; Rowland et al., 2009]. The tie channels surveyed by
Day et al. [2008] have typical widths of 15–39 m and typi-
cal depths of 4.5–8.5 m. The Manning coefficient was esti-
mated to be in the range 0.03–0.04 m1/3 s21. Assessing a
representative value of discharge is more challenging, since
the discharge largely varied between channels and also in
time. From Day et al. [2008, Figure 8], the most frequent
discharges are in the range 10–180 m3/s. Using the mean
values of depth, width, and friction coefficient, a stability

number S 5 0.035 is computed. For this stability value and
the mentioned range of discharges, Figure 5 indicates that
the jet is unstable.

[40] As for the laboratory experiments of Rowland et al.
[2009], a value of cf equal to 0.004 has been estimated
when the velocity data are subwindowed to exclude the
influence of the jet meander [Rowland, 2007]. Using this
value and their geometrical and boundary condition data,
we compute S 5 0.013 and ReB 5 116,000. This point falls
at the upper border of the transition region (Figure 5). Row-
land [2007] observed frictional suppression of the mean-
dering flow when medium sand was glued to the bed of the
entrance channel and when clay and plastic sediment were
used to allow erosion of the bed. In the first case, the
increased roughness was introduced to increase the turbu-
lence, but it ended up increasing also the friction and over-
all leading to suppression of any instability. Given the
sensitivity of Rowland et al.’s [2009] experiments to slight
changes in roughness, it makes sense that their experiment
plots close to the boundary between the stable and unstable
region (Figure 5).

4.3. Implications for the Construction of Elongate
Delta Distributary Channels

[41] Why do some deltas possess elongate distributary
channels (e.g., Gilgal Abay Delta in Lake Tana, Ethiopia
and the birdsfoot of the Mississippi River delta), whereas
others with similar wave and tide regimes do not (e.g.,
Selenga River Delta in Lake Baikal, Russia)? Kim et al.
[2009] argued that ‘‘a necessary condition for the forma-
tion of elongated or bird’s-foot deltas is the existence of
a prominent, well defined, prograding levee ‘‘pipeline’’
that aggrades to sufficient height to feed most of the sedi-
ment to the vicinity of the levee terminus.’’ Edmonds and
Slingerland [2010] on the other hand, argued that cohe-
sive sediment was a sufficient condition. The numerical
experiments here show a third possibility: a jet with a
small stability number forms robust levees that suppress
bifurcations and promote elongate distributary channels.
In fact, sediment properties may not even be a necessary

Table 1. Length of the Emerging Levee LL, Mouth Bar Distance
and Character of the Jet (Stable/Unstable) for Different Values of
the Chezy Coefficient (h 5 3 m, U 5 2 m/s, and B 5 15 m)

C S Stability LL Lb

10 0.490 Stable 0 30
20 0.120 Stable 0 70
25 0.078 Stable 0 95
30 0.054 Stable 0 130
35 0.040 Unstable 0 195
45 0.024 Unstable 340 350
55 0.016 Unstable 460 480
65 0.012 Unstable 500 530
75 0.008 Unstable 550 580

Figure 9. Plot of suspended sediment transport (Qs) normalized by its value at the outlet (Qs0) versus
longitudinal distance from the mouth (x) normalized by the mouth bar distance (Lb). The solid lines rep-
resent the best linear regression fit.
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condition for channel elongation; the same sediment size
apparently can produce short or elongate channels (Fig-
ures 7a and 7d).

[42] Recently, Falcini and Jerolmack [2010] developed
an elegant unifying theory based on the potential vorticity of
the jet to explain why some channels are elongate and others
are not. We note that the stability number also plays a role in
the theory proposed by Falcini and Jerolmack [2010]. The
latter theory states that, if the river mouth is characterized by
a high value of potential vorticity, the jet will not spread lat-
erally, thereby preserving its filament shape. On the contrary,
low potential vorticity jets display rapid spreading due to
friction. Falcini and Jerolmack [2010, equation (31)] reads:

dPc

dx
52

cf

h
Pc 5> Pc x; yð Þ5Pc 0; yð Þ exp 2

cf

h
x

� �
(16)

[43] Multiplying both side for B/2 and using the dimen-
sionless along axis coordinate n52x=B, the previous equa-
tion can be rewritten:

dPc

dn
52SPc 5> Pc n; fð Þ5Pc 0; fð Þexp 2Snð Þ (17)

where f5
2y
B . This means that the stability number repre-

sents the inverse of the dimensionless length scale of poten-
tial vorticity damping. If S is large, the potential vorticity
of the jet quickly decays and bar deposition at the center-
line of the jet is promoted. If S is small, potential vorticity
is constant and lateral deposition (i.e., levees) is more
likely to occur. Moreover, in light of the results in Figures
7–9, by decreasing S you can enter the regime where the jet
is unstable and an increase of transversal diffusion leads to
more pronounced levees.

[44] Scale analysis of potential vorticity carried out in
Falcini and Jerolmack [2010] leads to the following
formulation:

Pc5
Uc

Bh
(18)

in which c is the concentration at the river mouth. We can
link the depth-averaged concentration c to the flow charac-
teristics and sediment properties by using the (implicit)
Bagnold’s formulation [van Rijn, 2007] that reads:

c 5K
0
qs 11acð Þ U3

ghws

� �
(19)

where a 5 0.00062 and ws is the settling velocity. For the
concentrations usually found at river mouths ð11ac Þ ffi 1.
Therefore, neglecting as a first approximation the depend-
ence of K0 on the friction and by expressing the settling
velocity by using the Stoke’s law, we have that:

c / U3

hws
! c / U3

hd2
50

5> Pc /
U4

Bh2d2
50

(20)

[45] Note that Gc is a dimensional quantity, and once made
it dimensionless by dividing it by the constant g2=ðh2BÞ
we have that:

Pc /
U4

g2d2
50

/ M
0 2

(21)

that is, the dimensionless potential vorticity Pc is propor-
tional to the square of the jet momentum. Moreover, by
combining equations (17) and (21) and since B and h do
not depend on n, we have that

dM
0 2

dn
52SM

0 2
5> M

0 2
n; fð Þ5M

0 2
0; fð Þ exp 2Snð Þ (22)

that can also be written as:

M
0
n; fð Þ5M

0
0; fð Þ exp 2

S

2
n

� �
(23)

[46] Therefore, both M’ and Gc exhibit an exponential
decay along the jet axis.

[47] Since M’ is dimensionless, we suggest it may be the
more appropriate parameter to use, together with S, for ana-
lyzing the morphodynamic characteristics of the jet, at least
for systems in which frictional effects are not negligible.
The importance of friction on the structure of the jet, in
fact, was recognized by Falcini and Jerolmack [2010].
However, the latter claimed from equation (16) that fric-
tional effects are small for deep outlets, implying that Gc is
a nearly conserved quantity of the system. We note that
frictional effects are embedded in the dimensionless quan-
tity S and are actually small when the aspect ratio B/h is
small, since it implies a small S in equation (17), unless
friction (i.e., cf) is very large. Therefore, when S is small,
Gc also slowly decays along the jet axis, and a high value
of Gc can be safely used as an indicator for the occurrence
of filament jets forming elongated channels, as successfully
shown in Falcini and Jerolmack [2010].

[48] When frictional effects are not negligible (i.e., rela-
tively large S), Gc might not be a good indicator for jet
behavior. To prove the latter, we show in Figure 10, four
different simulations. The mouth width and the median
diameter of sediments have been fixed to 15 m and 200
lm, respectively, while h and C have been varied, all simu-
lations still being in the unstable region of Figure 5. Both
Figures 10a and 10b have a depth of 3 m, but in the first
case U 5 2 m/s and C545 m1/3 s21, while in the second
case the velocity has been raised to 4 m/s and the Chezy
coefficient lowered to 30 m1/3 s21. Note that the potential
vorticity Gc in Figure 10b, computed from equation (18), is
about 6 times larger than in Figure 10a. This notwithstand-
ing, the distance of the mouth bar is more than double in
Figure 10b, and the levees are well pronounced. Figure 10c
has the same parameters as in Figure 10a except that the
depth has been halved. Again, the potential vorticity is
larger but the bar forms much closer to the mouth. Finally,
Figure 10d has the same parameters as in Figures 10a and
10c, except for a depth of 4 m. The larger depth compared
to Figure 10a implies a decrease of Gc but also a decrease
of S. The latter prevails, since the jet spreads less and it cre-
ates a more elongated channel.

[49] It appears that the case with larger potential vortic-
ity does not have more pronounced levees and larger mouth
bar distance (Figure 10). The same consideration holds for
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the jet momentum. We suggest that the nonunique mapping
between potential vorticity /jet momentum and depositional
pattern is due to the fact that S plays a major role on setting
the location of the bar. We also observe that an unstable jet
does not always imply long levees, and Figure 10 shows
that the smaller the value of S the larger is the jet spreading
and the less pronounced are the levees, consistent with Fig-
ure 8 and equation (15).

[50] We note here that friction, expressed by the stability
number S, also affects jet spreading for both stable and
unstable jets. The flow field in a shallow jet can be divided
in two zones: the zone of flow establishment (ZOFE), in
the vicinity of the outlet, where the centerline velocity can
be assumed constant, and the zone of established flow
(ZOEF), showing a decay of centerline velocity [Ozsoy and
Unluata, 1982]. When bed friction is present, the extension
of the ZOFE is reduced, and to a first approximation the
main characteristics of the jet can be inferred considering
the ZOEF only [Ozsoy, 1977]. Note that in the theory of
Ozsoy [1977] both the average jet velocity and jet width
display, respectively, an exponential decay and growth
along the longitudinal coordinate that depends on the sta-
bility number S. Jet spreading implies a decrease of trans-
port capacity of the current, and lead to bar deposition
[Edmonds and Slingerland, 2007]. The larger the spread-
ing, the closer to the mouth the bar forms. In Edmonds and
Slingerland’s [2007] analysis, variations of frictional
effects, represented by the term S, were not included, but
we have shown in section 3.2 that friction plays a role on
mouth bar formation even more important than the one
played by the dimensionless jet momentum.

[51] Note that in our numerical investigation, we were
not able to form a channel that elongates indefinitely into
the receiving basin. A bar always formed at the end of the
channel. However our results, indicating a strong correla-
tion between distance of the bar and stability number, give

an indication of the likelihood (or tendency) of the jet to
form single channels or channels that are likely to
bifurcate.

4.4. Applications to Delta Restoration

[52] Deltaic coastlines are rapidly disappearing under the
combined effect of anthropogenic sediment retention and
relative sea level rise. A substantial challenge is to develop
theories and practical options for restoring these environ-
ments [e.g., Edmonds, 2012]. Currently, a restoration
option for countering land-loss in deltas include artificial
diversions that deliver sediment to build deltaic land in
eroding areas [Kim et al., 2009a; Paola et al., 2011]. As
noted in Falcini and Jerolmack [2010], the initial geometry
of the breach as well as the initial hydrodynamic conditions
should play an important role in maximizing land growth.
The results of this study indicate that, rather than using a
dimensional quantity such as Gc, the dimensionless quanti-
ties S and M’ should be used to design newly created del-
taic land. The designed levee breach should maximize the
value of S, while keeping M’ low enough to prevent the for-
mation of an elongated channel. M’ should be low but still
significantly above the threshold of incipient transport, in
order to speed up the process of land building. Maximizing
S will depend mainly on setting the breach width because
the friction coefficient is set by the grain size of the deliv-
ered sediment and the type of bed forms, and the depth h of
the bay is fixed. Furthermore, the stability of bifurcation
should be maintained, which requires a specific combina-
tion of cf, M0 (related to the shield stress h through cf) and
B of the trunk stream [Edmonds and Slingerland, 2008].

4.5. Limitations of the Simplified Modeling
Framework

[53] In the above analysis, we made many simplifying
assumptions when modeling natural river mouths that may

Figure 10. Variation of morphology with different values of potential vorticity, jet momentum and sta-
bility number. (a) U52 m/s, C 5 45 m1/3 s21, h 5 3 m. (b) U 5 4 m/s, C 5 30 m1/3 s21, h 5 3 m. (c)
U 5 2 m/s, C 5 45 m1/3 s21, h 5 1.5 m. (d) U 5 2 m/s, C 5 45 m1/3 s21, h 5 4 m. In all the simulations,
we use d50 5 200 lm.
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also affect jet stability. We neglected the effect of waves,
tides, positive buoyancy forces, and unsteady effects. As
for waves, recent work [Nardin and Fagherazzi, 2012;
Nardin et al., 2013] analyzed the effect of waves with a
height up to 1 m on the process of mouth bar formation.
The main result is that waves increases bottom friction and
therefore the spreading of the jet, therefore reducing the
distance at which bar forms. Only cases with a large stabil-
ity parameter S were studied, and therefore only stable jets
formed. With a higher wave height, waves destroy the bar
and a wave dominated delta forms [Nardin et al., 2013].
How the wind waves can affect the stability of the jet
should be subject of future research. On the one hand,
waves would probably increase the stability parameter S by
increasing bed friction. On the other hand, turbulence
would be enhanced by wave breaking and by the oscillatory
wave motion in the bottom boundary layer.

[54] The effect of tides on bar formation at river mouths
has been analyzed in a recent paper by Leonardi et al.
[2013]. In the fluvial dominated case, tides increase the
average jet spreading, producing wider mouth bars, and
speeding up their initial development [Leonardi et al.,
2013]. Therefore, tidal oscillations have a dispersive effect
on bar formation, similar to waves. Absence of stratifica-
tion can also affect our numerical results, but for large dis-
charges it is likely that the salt wedge would be pushed
seaward and stratification would not strongly influence dep-
osition (a discussion on this regard can be found in Row-
land et al. [2010]). Moreover, Edmonds and Slingerland
[2007] found in four numerical experiments that the pro-
cess of bar formation in saline water was not substantially
different from the same process in fresh water. More inves-
tigations are surely needed on this regard, to verify if the
same results hold for the case of levees’ formation. The
fact that elongated single-thread channels also form in
freshwater oxbow lakes [Rowland et al., 2009b; Falcini
and Jerolmack, 2010], indicate that stratification might not
be the main factor influencing their formation.

[55] Unsteady effects are also neglected in this work.
Ozsoy [1977], by means of a rigorous order-of-magnitude
analysis showed that unsteady effects are negligible at least
in the tidal case, and a steady theory can be used to study
quasi-steady jet properties. The same can be true for a river
flood in which variations of freshwater discharge are rela-
tively gradual. During a river flood, velocity increases,
while water depth is maintained approximately constant at
the river mouth [Lamb et al., 2012]. Therefore, it could
happen that for lower discharges the jet is stable while dur-
ing the maximum discharges, i.e., the formative events, the
jet can be unstable. It is known that mouth bar predomi-
nantly forms during river floods [Giosan et al., 2005; Mail-
let et al., 2006] and during low discharge conditions, wind
waves are likely to exert the main forcings on bar, that
could lead to disruption of the bar itself. Therefore, in sys-
tem in which there is a strong correlation between river
flood and storms in the coastal region, wind waves could
promote bar formation by enhancing jet spreading [Nardin
et al., 2013]. However, in systems in which wind waves are
reworking the bar for long periods while the river is inac-
tive, it is possible that the bar could be dispersed.

[56] We finally note that high mud contents have been
recognized to be a stabilizing mechanism of levees

[Edmonds and Slingerland, 2010]. Moreover, it is recog-
nized that rivers with a high cohesive load form narrower
hydraulic sections, that can affect the hydrodynamics of the
jet at the mouth [Parker, 1978; Falcini and Jerolmack,
2010]. This work also indicates that a high mud content
could indirectly promote the formation of a levee-
dominated river mouth since the bed would likely be
smoother and devoid of bed forms, leading to a reduction
of friction and jet spreading. This indirect effect of mud
was not included in previous numerical experiments simu-
lating mixed-load river mouths [Edmonds and Slingerland,
2010] and deserves further investigations.

5. Conclusions

[57] In this work, we show how the stable or unstable
character of a shallow jet can be determined once the
mouth stability number S and Reynolds number ReB of the
jet are known. In Edmonds and Slingerland [2007], it was
shown how the distance of the mouth bar displays a power
law increase with an increase of dimensionless momentum
of the jet, but friction was not varied. In this work, we
extend these results and highlight the importance of fric-
tion. In particular, we show that a frictionally dominated
flow, i.e., characterized by a large stability number, rapidly
spreads, causing a fast decrease in centerline velocity. This
deceleration forms a prominent mouth bars, giving rise to
short and rapidly diverging levees. On the contrary, pro-
nounced levees and therefore elongated channels form for
low stability numbers. Finally, sediment properties may not
even be a necessary condition for channel elongation,
because the same sediment size can produce short or elon-
gate channels by only varying the stability number.

Appendix A

[58] In the following, a scale analysis is performed to
show the validity of the hydrostatic assumption for our
numerical experiments. The vertical momentum equation
reads:

DW

Dt
1

1

q
dp

dz
5g (A1)

where D/Dt is the total time derivative (the meaning of the
variables is defined in section 2.1). The hydrostatic approx-
imation is valid whenever the condition:

DW

Dt
� g (A2)

is satisfied. If we indicate with L the horizontal scale of the
coherent structures and with h the vertical scale (coincident
with the depth), a maximum value of the vertical velocity
can be estimated by continuity and reads:

W5
Uh

L
(A3)

[59] The time scale of a particle of fluid moving through
the system is of order L/U. Therefore condition (A2) reads:
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R5
U2h

L2g
� 1 (A4)

[60] We use a conservative value of B as a horizontal
scale of the vortex, since in our simulations L5 4410ð Þ B;
see also Figure 2. It turns out that for all the simulations at
the field scale, this condition is largely verified, with the
maximum value of the ratio R being about 0.03. Most of
the simulations at the laboratory scale had R< 0.2. Only
for four simulations at laboratory scale, performed with a
high velocity, the ratio was between 0.1 and 1. Therefore,
the hydrostatic simulation is likely a good approximation
and the vertical velocities obtained by continuity should
not differ much from the one that would be computed by a
fully nonhydrostatic model.
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