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metric introduced there or the one defined by (1) is considered. The distance (1) is called the
distance with respect to the mapping (s, F') by L. Cesari, who introduces it in compact metric spaces
(cf. “Surface Area,” Ann. Math. Studies, 35, 159 (1956).

5 Cf. RS, §7(f).

6 Cf. 7bid., §3(c).

7 Cf. C. Kuratowski, Topologie (Warzawa-Wroctaw, 1950), 11, 51, théor. 4.

8 Cf. 2bid., I, 176, théor. 1; cf. also Hurewicz-Wallman, Dimension Theory (Princeton: Prince-
ton University-Press, 1948), p. 30, theor. I11 2.

9 Cf. W. Gross, “Eine ganze Funktion, fiir die jede komplexe Zahl Konvergenzwert ist,”” Math.
Ann.,'79, 201208, 1918.

10 Cf. RS, §4 for the relationship between asymptotic paths and boundary points and §5 for the
notation used here.

11 Cf. ibid. §3(d).

21 =¢.

13 Apparently every boundary point is the limit of a sequence of branch points. Indeed, if
tez, either every neighborhood of ¢ contains parts of infinitely many sheets, or all sufficiently small
neighborhoods are contained in a single sheet F.. In the first case { is a cluster point of cuts Ly,
and therefore, according to (ii), also of branch points. The second case cannot occur because
every boundary point of a sheet F, is an interior point of 7.

14 We can, of course, assume A to be non-empty.

THE EFFECTS OF STRONTIUM-90 ON MICE*
By BarcLay Kams anp Linus PavrinG
CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA
Communicated November 17, 1958

On Sept. 19, 1958 there was published in Science a paper by Dr. Miriam P.
Finkel of Argonne National Laboratory in which she communicated her observa-
tions on the effects of strontium-90 injected into mice on life expectancy and on
incidence of tumors of bone and blood-forming tissues.! She discussed the question
of whether or not the effects are proportional to the amount of injected strontium-
90 at low doses, and reached the conclusion that it is likely that there is a threshold
with value for man between 5 and 15 uc. (as compared with the present average
value from fallout, about 0.0002 wc., and the predicted steady-state value from
fallout for testing of nuclear weapons at the average rate for the past five years,
about 0.02 wc.). Her paper ends with the sentence “In any case, the present
contamination with strontium-90 from fallout is so very much lower than any of
these levels that it is extremely unlikely to induce even one bone tumor or one case
of leukemia.”

On the same day, Sept. 19, 1958, newspapers throughout the United States
published accounts of this work. For example, the Pasadena (Calif.) Star-News
contained an article with the headline “Tests on Mice Show Fallout Safe’” and the
first sentence, ‘“‘A woman researcher says tests on mice show that the present fallout
from nuclear weapons tests will not produce a single case of bone cancer or leukemia
in humans.” The New York Times published accounts of the work on both Sep-
tember 19 and September 28.

We have made an analysis of Dr. Finkel’s data that shows that she had no justi-
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fication whatever for her concluding statement. All of her data are compatible
with a zero threshold for strontium-90. Moreover, the statistical analysis shows
that in order for Dr. Finkel to have been justified with 90 per cent confidence
(10 per cent type-1I error) in making her concluding statement on the basis of her
data she would have to have used over 1,000,000,000,000 mice in each of her groups,
instead of the 150 or less that were used. It is hard for us to understand how
such a serious error could be made in Dr. Finkel’s argument, leading her to
publish her seriously misleading statement about this matter of great impor-
tance.

The Mice Experiments.—In the studies described by Dr. Finkel young adult
female mice (strain CF No. 1, about 70 days old) were given a single intravenous
injection of an isotonic equilibrium mixture of strontium-90 chloride and yttrium-90
chloride. There were twelve injected groups, ranging in size from 150 mice for the
group receiving the smallest amount (1.3 uc/kg body weight) ta 15 for that receiv-
ing the largest amount (9330 uc/kg, an amount that caused death of about 50 per
cent within 30 days). The control group contained 150 mice. The author states
that there is 11 per cent retention (at 600 days) of the injected radioactive material.
Report was made of the fractional decrease in average survival time, the incidence
of animals with osteogenic sarcomas (among 150-day survivors), and the fractional
decrease in time to a 20 per cent incidence of reticular tissue tumors compared with
the 20 per cent incidence time of the controls.

Studies of this sort may be of great value in providing information about the
probable amount of damage done to human beings by exposure to high-energy
radiation, such as that from strontium-90 produced by nuclear weapons. It is
important that the analysis of the experimental results be carried out correctly.
We have found that in the treatment of problems of this sort the assumption that
the probability of damage is strictly proportional to the amount of radiation ex-
posure does not in general require that a response such as decrease in life expectancy
be linear, except over a very small range. Moreover, we have found that this
assumption together with the theory of statistics can be applied in a reasonably
straightforward way in the discussion of data such as those obtained by Dr. Finkel,
as shown in the following sections.

Analysis of the Experimental Data on Life Shortening.—Our analysis proceeds
from the hypothesis, induced by Lewis? as a result of his study of the incidence of
leukemia, that exposure of the bone marrow of an animal to radiation results in an
increase in the probability per unit time that the animal will die at any time there-
after, the increase being proportional to the quantity of radiation absorbed. We
shall suppose that this hypothesis applies to all of the radiation-induced effects in
Dr. Finkel’s experiments with mice.

Let No be the number of animals at the beginning of a given experiment,
taken to be at ¢ = 0, and let N(f) be the expected number (average for many
experiments of the same kind) at the later time {. Further, let N°(f) be the
expected number in a “control” experiment in which no strontium-90 is injected, so
that

1 dN°

MO=" N @
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is the natural specific death-rate function. We denote by « the quantity of stron-
tium-90, in uc/kg body weight, that is retained in the animals. Then our hypothesis
yields the equation

dN N
— = —NBat — Nyt 1
dt Bal = oy N W
where (8 is a constant of proportionality relating the quantity of strontium-90 re-
tained to the increased probability per unit time that the animals will die, this
probability of course increasing linearly with time owing to the nearly constant
irradiation by the decaying strontium-90.

Let n°(t) = N°(t)/Ny, o that g(1) = —7°(). Then on integrating equation (1)
we obtain
1 0! :!
N=~N — S Bat? — | -l
OGXp[ Tl e
= NOnO(t)e~(1/2)ﬁaz2 _ No(t)e—(l/‘l)ﬂalz )

To compare this result with the experimental data we calculate A, the fractional
p ’

decrease in life expectancy (fractional decrease in average survival time after in-

jection),

to — to
lo

A:

where (¢, is the life expectancy for a retained quantity « of strontium-90,

1 ® .
te = ﬁoﬁ N(t)dt 3)

The equation for A is

1 (e 2
A=1-— 'f no(t)e """ dt (4a)
to Jo

21;) f: <t _ %\/’YE Erf t\/§> o) dt (4h)

1 . . .
where for simplicity we put v = 5 aB. The result in equation (4b) is obtained by

I

an integration by parts, and the error function is defined as

2 X
Erf 2 = ij e dy
™ Jo

If normally (for & = 0) all animals lived to the age { and then died, so that g(¢)
were a delta function 8(t — ), then we would have simply
_ VB vy

A== ey ?
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However. the actual lifetimes scatter with sizable dispersion about #. The
extent of this dispersion can be estimated from the acceptance region A < 0.07
quoted by Dr. Finkel (Figs. 3 and 4) as appropriate to a test of the hypothesis of
no difference between the responses of the control population and of a population
injected with a given dose of strontium-90. If we assume (1) that the test of no
difference applies to Curve A, the life-shortening data, (2) that the test was one-
tailed, and (3) that the test accounted for the uncertainty in the mean lifetime of
the control population and for the uncertainty in the mean lifetime of her group 10,
the highest-dosed population to fall within the acceptance region (except for the
“peculiar result” for group &), then we find that the estimated standard deviation
for ¢g(t) is # = 258 days.

These assumptions are somewhat uncertain, as explained later, but they are the
best that can be made from the information given in Dr. Finkel’s paper. The
uncertainty in drawing any conclusions about ¢(¢) from Dr. Finkel’s data lead us to
take a more general approach. Gompertz discovered that for animal populations
the logarithm of the “age-specific death rate’ is closely a linearly increasing func-
tion of time. For man the age-specific death-rate doubling time is about 8 years.
Jones?® has pointed out that the doubling times for different animal species are ap-
proximately proportional to the mean life spans for the species. We shall use this
information to derive a hypothetical death-rate function ¢(f) for the mouse popu-
lation used in Dr. Finkel’s experiments.

The Gompertz law is

Ing(t) = C + Bt (6)
which yields
nd(t) = exp [—A(@™ = 1)] @)
where 4 (= ¢/ B) is a constant and where B is related to the doubling time rp by
B -2 ®)
™

4 is to be chosen so as to give the correct mean life span:

eA

to = f: exp [—A (™ — Dt = & [~Fi(=4)] (9)

The exponential integral Ei(z) is defined by Jahnke and Emde.* If ¢t = 0 is
taken to be a time shortly after birth, but long enough after birth to exclude infant
deaths (which are omitted in Gompertz’ treatment), then ¢, is 7', the mean life
span from birth to death. If then 7'/rp is a constant for all animal species, we
find from equations (8) and (9) that A is a constant, independent of species, given
by the solution of the equation

A . r
A-Ei(=A)] = In2 (10)

Assuming 7" = 60 years for man, with rnb = 8 years, we find A = 0.0032. The
solution of equation (9) is obtained with the help of the expansion*
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2

—FEi(— = —InTz T
i(—z) nlz 4+ x 51

4. (11)
where I' = 1.781.
The death-rate function is

g(t) = ABexp [Bt — A(® — 1)]

The dispersion of life spans is measured by the standard deviation ¢ of g(¢):

ot = f 2g()dt — t? = 2f n'(f)dt — ty?
0 0

The second expression results from an integration by parts. A numerical integra-
tion is required to obtain ¢, which can most easily be carried out with n°(¢) values
from equation (7). In this way we find from equations (9) and (10), with ¢, = 7',
that

o = 0.24T

For Dr. Finkel’s mice, reported to have 7 = 670 days, we have ¢ = 161 days, in
rather poor agreement with the value ¢ = 258 days inferred above from her paper.

In the calculations that follow we have used equations (7) and (10), with the as-
sumption 7" = ¢, = 600 days, although actually the mice were about 70 days old
at the beginning of the experiment. Thus we have used a doubling time 7p of 80
days, and our ¢(f) has standard deviation ¢ = 141 days. The assumption p =
80 days agrees with the value quoted by Jones?® for mice. Values of n°(¢) for these
parameters are given in Table 1. The difference between assuming 7' = 600 days
and assuming 7' = 670 days is not great; in fact, survival curves calculated from
equation (5), which assumes ¢ = 0, do not differ greatly from curves obtained by
the more refined procedure that we have used.

TABLL 1

no(t) P
1.000 1.000
0.997 0.997
0.990 0.987
0.978 0.972
0.953 0.950
0.908 0.923
0.818 0.891
0.666 L
0.443
0.195
0.038
0.000

We proceed now to compare equation (4a), evaluated with the help of equations
(7) and (10), with the experimental life-shortening data. We assume with Dr.
Finkel that @ = 0.11a* where o* is the injected dose of strontium-90 in uc/kg body
weight, and we attempt to choose the available parameters so as best to reproduce
the observed life-shortening data A(a*). There are two parameters: the constant
8, and the no-dose life-shortening Ao, the latter arising from the fact that we cannot
give great weight to Dr. Finkel’s zero point because of the statistical uncertainty
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in the observed mean life span of the control population. Thus the theoretical
curve to be fitted to the data is

L e “n
Ala*) = A+ 1 — ;f nO(t)e~ OH/DE gy (12)
0Jo

The inclusion of A simply as a constant in equation (12) is not strictly correct: the
additive term arising from an adjustment of the zero point should be written
Ao(a™®), where Ay(a*) is a somewhat complicated decreasing function of «* that
tends to zero as a* — . For simplicity, however, we ignore this complication,
which proves to be unimportant for the Jower radiation levels (a* < 1000 uc/kg),
and which in any case does not much change the results obtained, because A, is
small.
For very small values of o* equation (12) reduces to

Aa™)

I

Ao + o E (0.11)8 fo i n"(t)tzdt:|

dA
A0+ a¥ —

do*

I

(13)

a* =0

This is the linear response region. We can therefore choose preliminary values of
A and B by estimating a linear fit to the experimental points at low values of a*.
The integration in equation (13) is performed numerically, with use of equation (7).

We have calculated theoretical curves from equation (12) in three steps: (1) For
a* < 50 ue/kg equation (13) applies; (2) for selected values of o* in the range 50 <
a* < 1000 we carry out the integration in equation (12) numerically, using time
intervals Af = 80 days; (3) for «* > 1000 it is found that the asymptotic form of
equation (12) is valid:

1 T
*) — _ = — 14
Ale™) A+ 1 o JO.]]Ba* (14)

Because we wish to examine the result statistically, we adjust the parameters by
a weighted least squares procedure. We calculate two theoretical curves y = fo +
flz, B) and y = fo + f(x, B2) (here y is fractional life shortening, A; x is injected
dose, a*; and fp is the constant Ag) for two nearly correct values 8; and B, of the
parameter 3. We ask for values fo = fo+ Afoand B = B + (B: — B1)6 of the
parameters such that the weighted sum of the squares of the differences between
the experimental values ¥, and the theoretical values y(z;) is a minimum:

>wiys — f@y, B) — fo)* = min (15)
Since 8; — G118 small we can assume that
f@y B) = f(xy, B) + [f(ws, B) — flxiy B1) 10
= f(x;, B1) + Afid (16)

The parameter adjustments Afy and § are then given by
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(ZwiAyi) (ZU’iAfiZ) - (szA_yz Af3) (szAfz)
(sz) (ZwlAfll) - (szAfz)2
_ (sz‘Ayz Af;) (sz) - (ZwiAyi) (ZwiAfi)
(Zuz) (szAfz2) - (ZwiAfi)2
where Ay; = y; — fo — f(2:, By).

The weights w; appearing in equations (15) and (17) should be inversely propor-
tional to the a priort variances of the experimental values y,, We take the vari-
ances to be inversely proportional to the number of animals in each experimental
group. This ignores the effect of radiation in changing the dispersion of life spans,

but a detailed examination shows it to be a not unreasonable procedure.
The theoretical curve obtained in the above manner is shown in Figure 1, with

Afy = 17)

100 o

80t
60
O (%) |

a0t

20t/

0 ——

2000

Y Y S W S— S I
4000 6000 8000

Injected Dose (uc/kg)

Fic. 1.—Percentage decrease in life expectancy, A, as a func-
tion of injected dose a* of strontium-90. Solid curve is the theore-
tical curve calculated from equation (12). Solid circles are the
experimental values reported by Dr. Finkel.

the experimental points for comparison. The two points at highest radiation levels
lie well above the curve, doubtless because the mechanism of life shortening at the
high radiation levels departs from what we have assumed, owing to the importance
of subacute and acute irradiation disease, which Dr. Finkel reports to be the pri-
mary cause of death at injected doses above 2200 uc/kg. These points make little
contribution to the least squares parameter adjustment, owing to their low weights,
and can be omitted without sensibly changing the result. The parameters ob-
tained are 8 = 1.8 X 10~7 day—? (uc/kg retained) 1, and Ay = 2.5 per cent.

The least-squares-fitted curve can be used to estimate the death-rate standard
deviation o: for experimental A values of unit weight (taken here to be for the con-
trol group and “group 12”"), the estimated variance of the experimental A values is

1 mn ~ N
P = m— 2 12_:1 wily: — fo — flxy, B)]? (18)
where m is the number of experimental points. Equation (18) takes into account
the two-parameter adjustment. If M is the number of animals in groups having
unit weight, then
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3 = Moy (19)

From equations (18) and (19) we find ¢ = 191 days in case the two highest points
mentioned above are omitted (& = 222 days in case they are included). Com-
paring the value 191 days with the value ¢ = 161 days based on the Gompertz
death-rate curve (670-day life span) and the value & = 258 days inferred from Dr.
Finkel’s data, we see that the theoretical curve fits the experimental values about
as well as would be expected from the Gompertz curve, and somewhat better than
would have been expected on the basis of Dr. Finkel’s acceptance region.

In Figure 2 there is shown the portion of the theoretical curve for the lower radi-

60, e

50

40t

/\(%) 30F

20t

o L L L L L . Lo 1 1 S
200 400 600 800

Injected Dose (uc/kg)

Fie. 2.—Percentage decrease in life expectancy in the low-dose
region of Dr. Finkel’s experiments. Theoretical curve and experi-
mental points as in Fig. 1.

ation levels. The curvature is pronounced, and the linear response region is re-
stricted to injected doses less than about 50 uc/kg. Most of Dr. Finkel’s experi-
ments were carried out in the nonlinear portion of the curve.

It is interesting to compare the above analysis with an alternative one based on
the approach developed by Jones,® in which the effect of a given exposure of an
animal to radiation is regarded as equivalent to an increase in physiological age of
the animal by an amount proportional to the amount of radiation received. In
terms of the Gompertz formulation of the natural death rate, this results in the
case we are considering to the addition of a linear term in ¢ to equation (6):

1
In <— N %) = C + Bt + Byat (20)
The constant By in this treatment plays a role analogous to the constant 8 used
previously.
From equations (3) and (20) we obtain

i ( A >
—E({— ———m
1 + no eA/(l-l—na) (21)
B(l + 1a)

by =
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where A = ¢°/B as before. In practice 4 is so small that the exponential integral
can adequately be approximated by the logarithmic term in equation (11):

A 1
—FKi| — =1 In (1
1( 1+W> 1‘A+n(+”“) (22)
Recognizing from equations (21) and (22) that
th = =1 L
T B4

and making use of equation (8), we obtain

_1+eln(l+77a)
1+ ga

A=1

(23)

where € = 7p/(fp In 2) == 1/5.

By choosing n = 0.014 (uc/kg retained)!, and by adjusting the zero point
slightly as done previously, we calculate from equation (23) a theoretical curve
that matches closely the curve calculated from equation (12), which is the curve
shown in Figures 1 and 2. The discrepancy in A between the two curves is less
than 0.02 over the range 0 < o* < 3000 we/kg, and increases to 0.04 at o* =
9000 uc/kg. The two curves fit the experimental data equally well, as shown by the
estimates o = 191 days for the curve from equation (12) and ¢ = 189 days for
equation (23), calculated by the weighted sum-of-squares procedure described pre-
viously. Life-shortening data, at least of the accuracy involved here, are therefore
unable to discriminate between the two analytical approaches.

Analysis of Incidence of Leukemia and Related Diseases.—The experimental data
on the incidence of diseases of the blood and blood-forming tissues can be analyzed
in the framework of the above treatment. However, because of the peculiar form
in which the experimental results are presented (‘Curve C: percentage decrease in
time to a 20 per cent incidence of reticular tissue tumors compared with the 20 per
cent incidence time of the controls’), the analysis is subject to greater uncertainties
and difficulties and the data cannot so readily be evaluated statistically as those
for the decreased life expectancy. We therefore content ourselves with a somewhat
sketchy treatment, which should suffice to indicate the general nature of the
problem.

Let A(¢, o) be the expected number of deaths due to these diseases that have
occurred by the time ¢ in a population having retained body burden « of strontium-
90. We may then expect to find a death-rate probability parameter 8, for these
diseases such that the death rate is

ax dho N(2)

— = N)Biat + —+ =

dt Ot + -, NO(1)
where \o(f) is the number of deaths due to these diseases expected in the control
population. To carry the analysis further we need to know the function A(¢), but
unfortunately Dr. Finkel presents no data that enable us to determine it. Of the
various assumptions that could be made, we have chosen to assume that the nat-
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ural deaths due to leukemia are distributed as though they were radiation-induced
according to the same model as the deaths due to radiation from strontium-90.
The natural leukemia death rate will then be equivalent to a “background” body
burden « of strontium-90, and equation (20) becomes

A\

a - N®By a0 + )t

Obtaining N (¢) from equation (2), we have

At ¢ 2
M) _ Bilaw + @) f nO(t)e ™ VIR ¢ dt
N() 0
The expected 20 per cent incidence time 7 is then the implicit solution of
T . 1
01181 es* + a®) [ mie= M gt = (24)
0
and the expected no-dose 20 per cent incidence time 7o is given by
70 1
0.118,a0* f nO(t)t dt = 5 (25)
0

70 as given by equation (25) is not necessarily the same as the 20 per cent incidence
time 7/ = 565 days observed for the control population.

To compare the theory with the experimental data we calculate from equation
(24) the fractional decrease function 1 — 7(a*)/7/. An adequate approximate
calculation for values of 7 less than about 450 days (1 — 7/7¢' > 0.20) can be made
by approximating n°(f) by a Gaussian e *’, as shown in Table 1. In this case
equation (24) becomes

1
pt+ 5 (011)8a*
0.118,(a* + a*) = I
5|:1 — exp (—72(u -+ iﬂ.llﬁa*)):l

To evaluate the parameters 3, and a* we have fitted a smooth curve, by eye, to the
experimental values of 1 — 7/7¢, and used this curve to pick pairs of values (a¥,
7(a*)) from which the quantity 0.118,(ac* + «*) was calculated from equation
(26). The quantity 0.11 8,a* was calculated from equation (25) by numerical
integration, with the assumption 7o = 7. When plotted against a*, the values
of 0.11 B(aw* + a*) calculated in this way lie nicely along a straight line, as re-
quired by the theory, for values of a* in the range 0 < a* < 1000 uc/kg. Above
1000 uc/kg the linear relation breaks down, reflecting the fact that the one experi-
mental value in this higher range, at 2200 uc/kg, lies rather far from the theoretical
curve. Ignoring this highest value we obtain in this way the parameters 8, =
0.7 X 10~7"day—2 (uc/kg) ~t and ap* = 200 uc/kg, from which the theoretical curve
shown in Figure 3 is calculated. In addition to the point 7(0), and the points
7(a*) calculated from equation (24) over the range of validity of the Gaussian ap-
proximation, we have calculated the slope of the theoretical curve at «* = 0 from
the following formula, which can be derived from equation (24):

(26)
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ottt Lo e b e b L
500 1000 1500 2000
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Fic. 3.—Percentage decrease in time to a 20 per cent incidence
of bone tumors, as a function of injected dose of strontium-90. Solid
curve is calculated from equation (26). Solid circles are experi-
mental values reported by Dr. Finkel.
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~ where vo = /2(0.11)8,a0*.  The ratio of integrals appearing in the second term of
~ the numerator in this equation can be shown to have a value close to unity (actually
1.06).

A comparison of the parameters 8, = 0.7 X 1077 and g8 = 1.8 X 1077 suggests
that of the radiation-induced deaths the fraction due to leukemia and related dis-
eases in Dr. Finkel’s experiments on mice is rather larger than has been estimated
for man. A particular sensitivity to these diseases on the part of this strain of
mice is suggested also by the large *‘background dose level” ag*, reflecting the rela-
tively large number of deaths due to these diseases in the control population.

Statistical Examination of Dr. Finkel’s Conclusions.—In searching for evidence
for the existence of a threshold body burden of strontium-90, below which no harm-
ful effects are caused, Dr. Finkel uses two methods: (1) statistical analysis of the
experimental data, and (2) extrapolation of experimental curves. We now con-
sider these two methods.

The statistical analysis consists of a ¢-test of the hypothesis of no difference in
response between the control population and a population dosed with strontium-90.
Dr. Finkel accepts the null hypothesis at the 10 per cent significance level (“109%
probability level or higher”) for the three lowest-dosed experimental groups. and
considers that this acceptance constitutes “evidence that there might be a thresh-
old” or that “a threshold . . . may lie between 4.5 and 44 uc/kg.”

It constitutes nothing of the kind. It is clear that the width of the acceptance
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region for the null hypothesis (shaded region in Figs. 3 and 4 of Dr. Finkel’s paper)
should vary inversely as the square root of the number of animals in the experimental
groups, assuming approximate normality of the death-rate curve ¢(¢), as Dr. Finkel
must have done in applying the t-test. The threshold for which she finds “evidence”
in the experiments is thus no threshold at all but simply a reflection of the statistical
uncertainty of her information. It is clear that she could have found “evidence”
of this sort for a threshold at any arbitrarily large radiation level (perhaps short
of what would produce acute radiation sickness) by simply using few enough
animals in her experiments.

The fallacy in Dr. Finkel’s statistical argument is a failure to control the prob-
ability of type-II error of her test. Type-II error® is acceptance of the null hypothe-
sis when it is in fact false. Consideration of the type-I11 error requires consideration
of the alternative to the null hypothesis, which in this case is the theoretically likely
linear response at low doses. If we use for the slope dA/da*la*=0 of the life-short-
ening response at low doses the value obtained above (eq. [13]) from a study of
Dr. Finkel’s results, namely, dA/da* = 0.149, (uc/kg) %, and if we assume that
Dr. Finkel’s i-test acceptance region is appropriate to a one-tailed test at «* = 8.9
uc/kg, the highest experimental value for which the null hypothesis was accepted.
then we can calculate the probability of type-II error. It is 85 per cent. This
means that if there exists in fact no threshold at 8.9 uc/kg, Dr. Finkel’s test would
nevertheless have produced “evidence’” for one in 85 experiments out of every 100
experiments performed. On the other hand, if there were in fact a threshold, the
test would deny it in only 10 per cent of the experiments. Kvidently the test is
worthless as a proof of the existence of a threshold at this dose level (or lower, for
which the probability of type-II error approaches the maximum that is possible,
90 per cent, for a 10 per cent probability of type-I error).

It is incumbent upon those who would extrapolate their threshold conclusions .
from 150 mice to 3 X 10° human beings that they demonstrate the existence of a
significant experimental departure from the theoretically likely linear response,
because although the existing burdens of strontium-90 are low, the number of
individuals involved is very large, and the harmful consequences of proceeding
on an unfounded assumption of a threshold are great.® As we have shown above,
Dr. Finkel’s results are in complete harmony with a linear law; in fact, the agree-
ment between the linear law and the experimental results is better than could have
been expected on the basis of the width of her null-hypothesis acceptance region.

As an alternative to the statistical tests, Dr. Finkel determines a threshold by
extrapolating the experimental life-shortening curve. She states: “Since the [life-
shortening | values for 1.3, 4.5, and 8.9 uc/kg do lie along a straight line when plotted
semilogarithmically, it may be argued that they represent true departures from
the control value. An extension of this straight line crosses the control value at
0.4 uc/kg.” It is difficult to see why the semilog plot rather than some other should
be used for the extrapolation. But in fact an extrapolation of any kind is ground-
less. The three response values lie within less than half the range of probable
error (within —1/, P.E. to 41/, P.E.) of the difference d between experimental
values of A, as determined from the width of the null-hypothesis acceptance region
(0g = 5.5 per cent). If it is not obvious that no non-zero regression slope deter-
mined from these points can have any statistical significance, one can show’ that
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the standard deviation of the regression slope estimator derived from the semi-
logarithmic plot is 2.2 times the estimated slope itself. If the semilogarithmically
linear relation of the three points can be ascribed to anything but chance, then all
of Dr. Finkel’s statistical arguments are false. It is hard to imagine how two such
mutually contradictory “proofs” could be advanced at one time.

There are other statistical points in Dr. Finkel’s paper that merit scrutiny. In
our discussion of her results we have had to rely on the correctness of the null-
hypothesis acceptance region that she presents, but there are serious reasons for
doubting its correctness. The width of the acceptance region corresponds to the
estimate ¢ = 284 days for the standard deviation of the death-rate function ¢(%),
if it applies to a one-tailed test on the difference between the life-shortening values
obtained from two experimental groups of 150 animals each. On the other hand,
Dr. Finkel’s statement?® that groups of 1393 animals would have been required to
establish as significant at the 1 per cent level the difference observed (2.5 per cent)
at the lowest dose corresponds to ¢ = 171 days, a gross discrepancy. The latter
value, we note, agrees reasonably with the values ¢ = 161 days from the Gompertz
relation or & = 191 days from the agreement between experimental data and our
theoretical curve.

It is clear that since the number of animals differs from one experimental group
to another in Dr. Finkel’s experiments, the null-hypothesis acceptance region can-
not have width independent of injected dose a*, as shown in her figures. From the
information given there is no way to tell to which experimental groups the test
appropriately applies.

More serious is the evident fact that Dr. Finkel applies the same acceptance re-
gion indiscriminately to the three very different sets of experimental data repre-
sented by her curves A, B, and C. It seems likely that the test was designed to
handle the life-shortening data (curve A), because a t-test would not be inappro-
priate to life-span data, since the death-rate function g(t) is (rather crudely) Gaus-
sian. A statistical analysis of the curve-C data would be difficult, because the
experimental statistic = (20 per cent incidence time) is cumbersome to handle mathe-
matically, as is evident in our discussion. But it is easy to show that Dr. Finkel’s
acceptance region is entirely inapplicable to the curve-B data (“proportion of ani-
mals that survived the latent period of 150 days and then died with osteogenic
sarcomas’’).

The number of bone-cancer deaths in populations of a given size during a given
time interval will be Poisson-distributed, if we neglect variations in population size
due to deaths during the first 150 days, which is legitimate, as can be seen from
Table 1 or from numbers given by Dr. Finkel, which show that the control group
still contained close to 150 animals at ¢ = 150 days. Whatever the low-dose re-
gression function for curve B, it is clear from Dr. Finkel’s Figure 4 that the ex-
pected number ¢ of bone-cancer deaths is close to 3 for groups of 150 animals not
dosed with strontium-90. To find acceptance regions for the null hypothesis of no
significant difference in the number of such deaths between the control population
and a dosed population of equal size we therefore find the value of the difference 6
such that the probability of type-I error (one-tailed test) is P:

op + 2n
—P—e* X ¢ %

152w S nlin + 9)! 27)
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The results of a numerical evaluation of equation (27), in case £ = 3, are P = 0.10,
6p = 2.6; P = 0.01,6p = 5; P = 0.001, 6» =2 8.5. Using the fact that the observed
number of control deaths was 3 (2 per cent of 150), we find that the upper limit of
the acceptance region at 10 per cent significance level is 3.7 per cent of 150. From
Dr. Finkel’s Figure 4 we therefore see that the highest strontium-90 dose that pro-
duced a ‘‘statistically non-significant increase” in the number of bone-cancer
deaths is 8.9 uc/kg, not 200 uc/kg as stated by her. Her acceptance region repre-
sents for curve B a test having 0.1 per cent probability of type-I error. Her entire
discussion of the statistical significance of the curve-B data is erroneous.

The Proper Testing of Evidence for a Threshold—From the above discussion it is
clear that a valid statistical test of the null hypothesis of ‘“no response’” at a given
radiation level or a given dose of strontium-90 must use the type-II error as the
basic parameter, rather than the type-I error, as is employed in the standard “‘cook
book’ tests, which are designed basically for application to the manufacture of
goods. Alternatively stated, the null hypothesis that must be tested in the stand-
ard way is the hypothesis that the observed response values are in accord with a
linear response curve at low doses.

Our analysis of Dr. Finkel’s data for mice enables us to estimate reliably the
linear decrease in life expectancy for low doses of strontium-90, and it is therefore
possible for us to determine how many animals would have to be used in an experi-
ment in which the mean lifetime of a control group is compared with the mean
lifetime of a dosed group in order to establish the existence of a threshold at or
above the dose used. We may consider two types of test: (A) the “minimal’ test,
that is, the test that requires as few animals as possible; (B) the “most powerful”
test, which minimizes the probability both of type-I and of type-II error.

The null-hypothesis “no response” for test A is to be accepted if the dosed group
exhibits no decrease in life expectancy, or an actual increase, when compared to the
control group. Clearly this acceptance region makes the test minimal, because the
probability of type-I error is 50 per cent, so that the test gives a neutral decision in
case a threshold actually exists. If the number of animals used is greater than re-
quired for test A, then a decision as to the existence of a threshold will be more
often right than wrong, in case that the threshold does actually exist. At the same
time we can protect ourselves adequately against the serious alternative possibility
by suitably choosing the type-II error.

Since the expected decrease in life expectancy for the dosed group is a-dA/da lo,
the type-I and type-II errors are simultaneously minimized, and made equal, by
choosing as the upper limit of the acceptance region for test B a decrease in life ex-
pectancy of /sa-dA/da ’0 = 0.639% - a, where « is given in uc/kg retained in the
body.

Since the expected decrease is proportional to «, the number of animals M re-
quired for the control group, if an equal number is used for the dosed group, is given
by

M= (28)

o
where » is a constant that depends on the type of test (A or B), on the probability
of type-II error, and on the standard deviation ¢ of the natural death-rate function
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g(t). Because M proves in all cases of interest to be large, it is adequate to use the
normal distribution in computing the constants » in equation (28), owing to the
Central Limit Theorem.

TABLE 2
VaLues oF THE CONSTANT » IN EqQuaTion (28)

Typr or TesT

A
(““Minimal’’) (““Most Powerful”’)
o (days). oo 284 170 284 170
10 per cent probability of type-IL error. . . .. 4560 1630 18240 5520
1 per cent probability of type-II error. .. ... 14950 5360 59800 21440

Using all of these principles, we have computed the coefficients » for the various
circumstances shown in Table 2. In particular we compare the results for ¢ =
284 days, derived from Dr. Finkel’s acceptance region, with the results for ¢ = 170
days, which seems most reasonable on the basis of the previous discussion.

The numbers » given in Table 2 are equal to the number of animals in the control
and in the dosed groups required to establish the existence of a threshold at o* =
9.1 uc/kg, just above the highest injected dose (8.9 we/kg) for which Dr. Finkel
accepted the hypothesis that a threshold exists. The numbers of animals used in
her experiments were too small by factors of 10 to 400, for the conclusion that she
reached. By solving equation (28) for « we may compute very simply the lowest
threshold ar* that could have been recognized with statistical significance in her
experiments, assuming that 150 animals were used both in the control group and in
the dosed groups, which in general was not the case (fewer were used). These val-
ues of ar* are 91 and 54 for test A and 181 and 109 for test B (in each case for
o = 284 days and 170 days, respectively). It is clear from the experimental data
that no threshold exists at any of these levels, and accordingly we are required to
conclude that Dr. Finkel’s data show that there is no threshold large enough to
have been recognized with statistical significance from her data.

Conclusions about Effects on Man of Stronttum-90 from Fallout.—We now turn to
the discussion of Dr. Finkel’s conclusion that the present contamination with stron-
tium-90 from fallout is so very much lower than the ‘“‘threshold” levels that it is
extremely unlikely to induce even one bone tumor or one case of leukemia.

This statement by Dr. Finkel is shown by the argument given above to have no
justification whatever from her experimental results, obtained with 150 mice or
fewer in her control group and injected groups. We may ask how many mice
would be needed in each group in order to permit Dr. Finkel’s statement to be
mode with statistical significance (or to be shown to be false).

The present average body burden of strontium-90 in the world’s population is
about 0.0002 uc. per person. This corresponds, with Dr. Finkel’s conversion factor
(5 to 10 ue. per 70-kg man equivalent to 1 uc. retained per kg for mice) to a retained
dose & = 0.00002 to 0.00004 uc/kg in mice. Hence in order to justify Dr. Finkel’s
statement evidence would be needed that the mouse threshold is as great as about
0.00004 uc/kg; that is, we must place « in equation (28) equal to 0.060004 uc/kg.
From the values of the constant » in Table 2 (we use the values for ¢ = 170 days,
which we believe to be better than those for o = 284 days) we find M = 1 X 10'?
for the “minimal” test and 3.4 X 102 for the “most powerful” test with 10 per cent
type-II error, and 2.3 X 102 and 13.5 X 102, respectively, with 1 per cent type-I1
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error. We hence conclude that a study like that made by Dr. Finkel would have
to use a much greater number of mice than the number of people in the world, in
order to provide evidence that would justify her extreme statement to be made
with statistical significance.

This conclusion is, of course, not at all unexpected. The difficulty of detecting
by statistical methods an effect that causes a small increase in the annual number
of deaths among the world’s population is well known. For example, let us as-
sume that the average number of deaths per year is 50 million. The statistical
fluctuations from this average from year to year are measured roughly by the
square root of this number, 7600; and accordingly a study of a larger population
would be needed to show with statistical significance the existence of an effect
resulting in an additional 1000 deaths per year (the rough estimate of the world-
wide effect of the present body burden of strontium-90 from fallout, if there is no
threshold). The same number of mice would be needed to test the equivalent
effect in mice.

Summary.—We have developed methods of theoretical analysis of the results of
experimental studies of the effects of injection of radioactive substances into ani-
mals on their life expectancy and on the incidence of tumors. These methods have
been applied to the data reported for mice by Dr. Miriam P. Finkel, and it has been
shown that her conclusion from these data that it is extremely unlikely that the
strontium-90 from the fallout from nuclear weapons tests will induce even one bone
tumor or one case of leukemia in human beings is completely unjustified.

* This paper is a contribution from the Division of the Geological Sciences (No. 908) and the
Division of Chemistry and Chemical Engineering (No. 2421) of the Institute. A brief account of
the work has been published by us (Letter to the Editor, The New York Times, Nov. 16, 1958),
and a reply has been made by Dr. Finkel (¢bid., Nov., 30 1958).
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GRAVITATIONAL PROPERTIES OF ANTIMATTER*
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Read before The Academy, November 7, 1958
Fotvos Experiments and FEquivalence Principle—A very precise series of experi-
ments involving gravity was performed by IS6tvos and collaborators between 1890

and 1922.! These experiments sought for possible variations in the ratio of gravi-
tational to inertial mass from one substance to another. By “gravitational mass”’



