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Glossary
Babel An open-source, language-interoperability tool

(and compiler) that automatically generates the ’glue code’

for inter-component communication.

Bocca A development environment tool to create, edit,

and manage Common Component Architecture (CCA)

components and ports associated with a particular project.

Common Component Architecture (CCA) A

component-architecture standard adopted by the US

Department of Energy, its national labs, and many

academic computational centers to allow software

components to be combined.

Community modeling The collective efforts of

individuals to code, debug, test, document, run, and apply a

suite of modeling components coupled in a framework or

community modeling system.

CSDMS An integrated community of experts developing

and disseminating integrated software modules that predict
ngerland, R., Syvitski, J.P.M., 2013. A community approach to modeling

rth- and seascapes. In: Shroder, J. (Editor in Chief), Baas, A.C.W. (Ed.),

eatise on Geomorphology. Academic Press, San Diego, CA, vol. 2,

antitative Modeling of Geomorphology, pp. 44–49.

Treatise on Geomo
the movement of fluids (wind, water, and ice), sediment,

and solutes in landscapes, seascapes, and their sedimentary

basins.

CSDMS Modeling Tool A user-friendly graphical user

interface (GUI) that exploits Ccaffeine, a simple set of

scripting commands that instantiate, connect, and

disconnect CCA-compliant components.

Framework A set of agreed-upon protocols that allow the

software components to function together.

Modeling components Modular code, commonly with a

standardized interface to allow different modules to

communicate with other components written in a different

programming language.

Open-source code Software that is freely available and

modifiable. Its attributes are flexibility, tailorability,

modularity, and open-endedness in contrast to commercial

software.
Abstract
Developing a unified, predictive science of surface processes requires a quantitative understanding of critical surface-

dynamics processes. An efficient approach to acquire this understanding is community modeling, defined here as the

collective efforts of individuals to code, debug, test, document, run, and apply a suite of modeling components coupled in a
framework or community modeling system. The modeling components each consist of modular code, commonly with a

standardized interface to allow different modules to communicate with other components written in a different pro-

gramming language. The framework is a set of agreed-upon protocols that allow the components to function together.

Because of the framework, users can assemble components coded and vetted by specialists into complex models tuned to
their specific objectives. The advantages of community modeling are efficient use of community resources and more

effective integration of scientists and software specialists.
2.4.1 Background

Starting in the 1970s, geoscientists began to translate con-

ceptual models of complex, interacting geomorphic systems

into computer codes to address problems that were not
solvable analytically. The pioneering works of Strelkoff (1970)

solving the open-channel-flow equations, Ahnert (1976)

modeling the evolution of a landscape and channel network,

and Harbaugh and Bonham-Carter (1970) modeling sedi-

mentary systems showed us what was possible. With the ad-

vent of personal computers in the 1980s the trend accelerated,

and journals, such as Computers and Geosciences, founded in

1976, were publishing over 100 computer codes a year. By the

1990s, the value of quantitative, model-driven science in

Earth-surface studies was so apparent that funding panels
rphology, Volume 2 http://dx.doi.org/10.1016/B978-0-12-374739-6.00026-9
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began to expect it in proposals. A new generation of young

scientists more comfortable with algorithmic computation

and, in some cases, better trained in mathematics led to a

flowering in geomorphology. Noteworthy examples are the

insights gained in tectonic geomorphology from coupled

tectonic and landscape evolution models and in the evolution

of coastal depositional systems from a new generation of

morphodynamic models.

During this exciting development phase, geomorphology

codes were typically small, involving single developers. There

were also few repositories that would publish or make public

your code, an exception being the journal Computers and

Geosciences, where there is an expectation but no requirement

to share your code. Some scientists distributed their code

widely, but most code remained outside of the peer-review

process. Some examples of published geomorphology codes

include the water-balance and transport model, HydroTrend

(Syvitski et al., 1998; Kettner and Syvitski, 2008); the mor-

phodynamics and stratigraphic models, SedFlux (Syvitski and

Hutton, 2001; Hutton and Syvitski, 2008) and SedSim (Tet-

zlaff and Harbaugh, 1989; Martinez and Harbaugh, 1993);

and the morphodynamics codes of Slingerland et al. (1994),

Parker (2007), and Pelletier (2008).
2.4.2 Concept of a Community Modeling System

By 2002, it was apparent to many in the Earth-surface-science

community that developing a unified, predictive science

of surface processes was beset by two large and growing

problems – the community was fragmented and the quanti-

tative understanding of critical surface-dynamics processes

was uneven. To address these issues, the National Science

Foundation (USA) sponsored a workshop in 2002 directed

toward developing a ‘Community Sediment Model’. It was

envisioned as a series of integrated, quantitative predictive

models of basin and landscape evolution, encompassing both

the subaerial and submarine realms. Subsequent workshops,

guided by parallel developments in geophysics and climate

science, refined the concept and, in 2007, led to the estab-

lishment and funding of CSDMS, the Community Surface

Dynamics Modeling System. Other supportive community

efforts included the Chesapeake Community Modeling Pro-

gram, the Coastal Sediment Transport Modeling System

(Warner et al., 2008), and ROMS (the Regional Ocean Mod-

eling System). Community modeling as defined here involves

the collective efforts of individuals to code, debug, test,

document, run, and apply models and modeling frameworks

(Voinov et al., 2010).

In its most basic form, a community modeling system is a

suite of modeling components coupled in a framework

(Voinov et al., 2008). The modeling components each consist

of modular code, commonly with a standardized interface to

allow different modules to communicate, that performs spe-

cific tasks, such as reading digital elevation data from a file or

computing grain-settling velocities according to a specific

formula. Components typically can communicate with other

components written in a different programming language and,

thus, are different from ordinary subroutines, software mod-

ules, or classes in an object-oriented language. Individuals of
relevant expertise freely give their time to code, debug, test,

and document the various components and then donate them

to the system. This by itself leads to an improvement in

community efficiency. However, the real power of community

modeling lies in the framework, a set of agreed-upon proto-

cols that allow the components to function together. Because

of the framework, users can assemble components coded and

vetted by specialists into complex models tuned to their spe-

cific objectives. The advantages of community modeling in-

clude: first, efficient use of community resources by cutting

redundancy among researchers and institutions. Second, it

promotes more effective integration of scientists and software

specialists working on a particular Earth-surface system. Fi-

nally, it allows users, characteristically with valuable data sets,

to participate in model definition and interaction with the

data.
2.4.3 Open-Source and Readily Available Code

Community modeling relies on open-source code to address

the practical need of contributing developers to examine and

modify the code. Open-source code provides complete infor-

mation transfer. Transparency is important because code is the

ultimate statement of the scientific hypotheses embodied in a

numerical model and their implementation. A scientific article

may provide the theoretical equations, but the solution to

these equations can take numerous forms, and each solution

has its own pyramid of assumptions and limitations. Open-

source code allows for full peer review and replication of re-

sults – the foundation of modern science (Syvitski and

Grunsky, 2010). Further, code availability should not depend

on a gatekeeper, who subjectively determines who gets to see

the code; this also runs contrary to the transparency needed in

science.

Community modeling therefore relies on, ‘‘software li-

censing and distribution designed to encourage use and im-

provement of software written by volunteers by ensuring that

anyone can copy the source code and modify it freely’’ (Jesiek,

2003). Open-source software is not necessarily freeware, but

the source code must be freely available and modifiable. Its

attributes are flexibility, tailorability, modularity, and open-

endedness, in contrast to commercial software.
2.4.4 Community Modeling and the CSDMS
Approach

The largest and most inclusive communal modeling effort in

hydrology, geomorphology, sedimentology, and stratigraphy,

with overlap in related fields of environmental engineering,

oceanography, and tectonics is the Community Surface Dy-

namics Modeling System or CSDMS (pronounced ‘systems’).

CSDMS is an integrated community of experts developing and

disseminating integrated software modules that predict the

movement of fluids (wind, water, and ice), sediment, and

solutes in landscapes, seascapes, and their sedimentary basins.

The organization operates under a cooperative agreement with

the National Science Foundation (NSF) with additional fi-

nancial support from industry and other government agencies.
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The CSDMS Model Repository comprises a searchable

inventory of models, some of which have been made into

components that users can link through the CSDMS model-

coupling framework into a stand-alone model. The CSDMS

model repository in January 2010 offers the community over 3

million lines of code. Users can then run their model on the

CSDMS high-performance computer and verify and validate

their results using high-quality data sets from the CSDMS Data

Repository. CSDMS Working Groups self-organized from the

scientific community identify important knowledge gaps and

encourage code development in those areas.

CSDMS is a complete modeling environment involving a

model repository of numerous research-grade codes with

augmented services and tools, such as from the Earth System

Modeling Framework (Collins et al., 2005). CSDMS employs

the Common Component Architecture (Kumfert et al., 2006)

and Open Modeling Interface (OpenMI) standards (Gregersen

et al., 2007) to provide model coupling, language interoper-

ability, use of unstructured, structured, and object-oriented

code, and structured and unstructured grids.

To aid the CSDMS community effort, a series of protocols

were established to provide the needed technical and coding

recommendations to model developers. Software contri-

butions to the CSDMS Model Repository should:

1. hold an open-source ‘GPL v2’ or a ‘GPL v2 compatible’

license;

2. be widely available to the community of scientists through

an international model or code repository;

3. undergo a level of peer review;

4. either be written in an open-source language or have a

pathway for use in an open-source environment;

5. be written or refactored to allow for componentization by

having an interface, with specific exchange items

documented;
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Figure 1 Schematic CSDMS Modeling Architecture consists of a library of
Standards, a suite of CCA/CSDMS and OpenMI Services, and the language
6. be accompanied with a formally defined metadata file,

along with test files; and

7. be clean and well documented.

These protocols provide extensibility to software and allow for

state-of-the-art tools to convert stand-alone models into flex-

ible, ‘plug-and-play’ components that can be assembled into

larger applications (Syvitski et al., 2011). The protocols also

allow a migration pathway toward high-performance com-

puting (HPC).

In a world of multiple computer languages and hardware

architectures, how is all of this possible? CSDMS software

engineers use the tools of the Common Component Archi-

tecture (CCA) to convert member-contributed code into

linkable components (Hutton et al., 2010) (Figure 1). CCA is

a component architecture standard adopted by the U.S. De-

partment of Energy, its national labs, and many academic

computational centers to allow software components to be

combined (Kumfert et al., 2006). Three framework tools fol-

lowing the CCA standard have been adopted by CSDMS:

Babel, Bocca, and Ccaffeine.

Babel is an open-source, language-interoperability tool

(and compiler) that automatically generates the ‘glue code’ for

inter-component communication (Dahlgren et al., 2007). It

currently supports C, Cþ þ , Fortran (77, 90, 95, and 2003),

Java, and Python. For two components written in different

programming languages to exchange data, Babel only needs to

know about their interfaces. These interface descriptions may

be written in either XML (eXtensible Markup Language) or

SIDL (Scientific Interface Definition Language) and include

the names and data types of all arguments and the return

values for each member function. CSDMS uses OpenMI as its

model interface standard – a standardized set of rules and

supporting infrastructure for how a component must be

written or refactored in order for it to more easily exchange
177
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data with other components that adhere to the same standard

(Moore and Tindall, 2005; Gregersen et al., 2007). Additional

OpenMI functions handle other differences among com-

ponents, such as differing units, time steps, and dimension-

ality. CSMDS also employs services from Earth System

Modeling Framework (ESMF) for mapping between un-

structured and structured grids (e.g., triangular to raster)

within an HPC environment.

Bocca helps create, edit, and manage CCA components and

ports associated with a particular project (Elwasif et al., 2007).

It is a development environment tool that allows rapid com-

ponent prototyping. Once CCA-compliant components and

ports are prepared using Bocca, CSDMS members can then

assemble models into applications, with the CSDMS Model-

ing Tool (CMT).

The components can be assembled into a functional sur-

face process model using the CMT (Figure 2). It is a user-

friendly graphical user interface (GUI) that exploits Ccaffeine,

a simple set of scripting commands that instantiate, connect,

and disconnect CCA-compliant components. Ccaffeine can be

used at an interactive command prompt or with a ‘Ccaffeine

script’, but, for new users, the easiest approach is the CMT.

This tool allows users to select components from a palette and

drag them into an arena. Components in the arena can be

connected to one another by clicking on buttons that repre-

sent their ports. A component with a ‘config’ button allows its

parameters to be changed in a tabbed dialog. Once com-

ponents are connected, clicking on a ‘run’ button on the
CCA Aren
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Figure 2 A ‘wiring diagram’ for a CSDMS project. The CCA framework cal
components to create working applications.
‘driver’ component starts the application. The CMT offers

significant extensions and improvements to the basic Ccaf-

feine GUI, including offering a powerful, open-source (US

Department of Energy (DOE)) visualization package called

VisIt that is specifically designed for HPC use with multiple

processors.

As an example, consider a scientist who wants to investi-

gate the role of sediment cohesion on the planform of deltas.

The scientist starts by compiling a list of the relevant processes

to be included. He/she then downloads and installs the CMT

onto a local computer. From the CSDMS libraries, the scientist

chooses components that simulate the processes of interest

and links them using the CMT. If, for example, a bedload-

transport module needs to know the settling velocities of

grains, she would link an out-port on the bedload-transport

module to an in-port on a settling-velocity module, which

would ingest the grain diameters and compute settling vel-

ocities. A similar connection back to the bedload-transport

module would feed it the settling velocities. Other modules

would define the initial and boundary conditions of interest.

The person can then either run the new application on the

CSDMS supercomputer or download the executable model

and run it on their personal computer or server. All this is

possible because the CMT supports: (1) Linux, OSX, and

Windows platforms; (2) language interoperability; (3) legacy

(non-protocol) code and structured code (procedural and

object-oriented); (4) both structured and unstructured grids;

and (5) a large offering of open-source tools.
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2.4.5 Challenges

Voinov et al. (2008) outlined several technical challenges

faced by community-modeling efforts in Earth-surface dy-

namics, including a lack of standards for data and model

interfaces and a lack of software to facilitate community col-

laborations. Probably the two most serious challenges are

poorly known fundamental algorithms describing Earth-

surface processes and significant social and institutional bar-

riers to community model development. Well-documented,

peer-reviewed code should be seen as worthy of merit with

effective venues for peer review, publication, and citation.
2.4.6 Summary

Community modeling efforts, such as CSDMS, provide a

competitive yet cooperative environment that can produce

more reliable and more flexible simulation models than in-

dividuals working alone. Freely available open-source code

eliminates the endless rewriting of the same initial algorithms,

allowing more time spent on new advances. The CSDMS

protocols create honesty in what modelers claim, and the

CSDMS architecture allows for faster verification and com-

parison of different approaches on new data sets. Communi-

cation is greatly increased among users and coders, and,

therefore, a more integrated community is built. If a new and

improved model component is developed, then this new

component is provided with faster penetration into the com-

munity and likely will replace older components. New model

couplings will allow hypothesis testing, sensitivity experiments

on key parameters, and the identification of new avenues of

research.
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Relevant Websites

http://ches.communitymodeling.org
CCMP is dedicated to advancing the cause of accessible, open-source
environmental models of the Chesapeake Bay in support of research and
management efforts.

http://www.cstms.org
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http://www.myroms.org
The Regional Ocean Modeling System (ROMS) framework.
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