Errata

Slingerland, R.L. and Kump, L., 2011. Mathematical Modelling of Earth's Dynamical Systems. Princeton University Press, Princeton, 231 pp.

Chapter 2

p. 38--Modeling Exercise 3, first line: Change "fully implicit" to "Crank-Nicolson".

Chapter 3

p. 41--Equation 3.1 should read

D = kM

p. 45--just above equation 3.10, text should read:

"... canonical value of P = 2.45 ..."

p. 45--Equation 3.11 should read

 $P' = P + bsin(\omega t)$

p. 45--Equation 3.13 should read

$$\frac{dM}{dt} = P + b\sin(\omega t) - kM$$

and in equation 3.12, all "primes" on P should be removed as well.

- p. 46--middle of the page, the prime on P should be removed.
- P. 57--on the line after Eq. 3.28, text should read:
- "... (a rearrangement of the forward difference operator, equation 2.14), which can be ..."
- p. 69--Fig. 3.14 is missing the y axis. Should read "C reservoir size"
- p. 70--middle of last paragraph, the parenthetical phrase should read:
- "..." (e.g., $\varepsilon \vec{y}_n^1$, where ε is typically 0.001)..."

and then later in the paragraph:

". . . Divide the difference between the incremented derivatives and the original derivatives by $\varepsilon \vec{y}_n^1$. This gives you the first column in the Jacobian."

p. 73, Modeling Exercise 3, the second differential equation given should read:

$$\frac{dy_2}{dt} = -999y_1 - 1999y_2$$

Chapter 4

p. 76--first paragraph, we should have included an explicit treatment of porosity. Accordingly, the 9th line should read:

"... distance along the aquifer,
$$x$$
 [m]; porosity, ϕ [$\frac{\text{vol. of pore space}}{\text{vol. of aquifer}}$]; and time, t [s]..."

Then Equation 4.2 should be modified and additional text added after Equation 4.2:

$$\frac{\partial CAdx\phi}{\partial t} = qA\phi - \left(qA\phi + \frac{\partial qA\phi}{\partial x}dx\right) - SAdx\phi, \tag{4.2}$$

where we are assuming that the cross-sectional area for diffusive flux is reduced proportionally to the porosity."

p. 79--the non-dimensional indicator * was not consistently applied to the appropriate variables. In the third paragraph:

"For the nondimensionalized diffusion problem described above, with the initial condition $C^*(0,x^*) = 0$ and boundary conditions $C^*(x^*,0) = 1$ and $C^*(x^*,\infty) = 0$, the exact solution is . . ."

p. 88—Modeling Exercise 1, sixth line: Change " α_b = 2 rad" to " α_b "

Chapter 5

p. 95—fourth sentence in section entitled **Check Units**: change "t* = tD/L" to "t* = tD/L^2 "

Chapter 7

p.132—second line of Equation 7.2 should read: " $+q_pWY - \left[q_pWY + \frac{\partial q_pWY}{\partial x}dx\right] + SYWdx$ "

p. 145—Equation 7.22 should read: "
$$\frac{P_i^{n+1} - P_i^n}{\Delta t} = -u \frac{P_r^n - P_l^n}{\Delta x} + D \frac{P_{i-1}^n - 2P_{-i}^n + P_{i+1}^n}{\Delta x^2}$$
"

Chapter 8

p. 159—Equation 8.17 should read:

$$u_{i}^{\overline{n+1}} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \Big(E_{i+1}^{n} - E_{i}^{n} \Big) + r(u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n})$$

where

$$r = \frac{\Delta t}{\Delta x^2}$$

p. 160—Equation 8.18 should read:

$$\begin{split} u_i^{n+1} &= \frac{1}{2}[u_i^n + u_i^{\overline{n+1}} - \frac{\Delta t}{\Delta x} \Big(E_i^{\overline{n+1}} - E_{i-1}^{\overline{n+1}} \Big) \\ &+ r(u_{i+1}^{\overline{n+1}} - 2u_i^{\overline{n+1}} + u_{i-1}^{\overline{n+1}})] \end{split}$$

Chapter 9

p. 186—Modeling Exercise 3, first hint should read: "The governing equations will be conservation of mass equation for the flow, a general law...etc."