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ABSTRACT

The Salamanca Formation of the San 
Jorge Basin (Patagonia, Argentina) preserves 
critical records of Southern Hemisphere 
Paleo cene biotas, but its age remains poorly 
resolved, with estimates ranging from Late 
Cretaceous to middle Paleocene. We report 
a multi-disciplinary geochronologic study of 
the Salamanca Formation and overlying Río 
Chico Group in the western part of the basin . 
New constraints include (1) an 40Ar/39Ar 
age determination of 67.31 ± 0.55 Ma from 
a basalt fl ow underlying the Salamanca 
Formation, (2) micropaleontological re-
sults indicating an early Danian age for the 
base of the Salamanca Formation, (3) laser 
ablation HR-MC-ICP-MS (high resolution-
multi collector-inductively coupled plasma-
mass spectrometry) U-Pb ages and a high-

resolution TIMS (thermal ionization mass 
spectrometry) age of 61.984 ± 0.041(0.074)
[0.100] Ma for zircons from volcanic ash 
beds in the Peñas Coloradas Formation (Río 
Chico Group), and (4) paleomagnetic results 
indicating that the Salamanca Formation in 
this area is entirely of normal polarity, with 
reversals occurring in the Río Chico Group. 
Placing these new age constraints in the con-
text of a sequence stratigraphic model for the 
basin, we correlate the Salamanca Forma-
tion in the study area to Chrons C29n and 
C28n, with the Banco Negro Inferior (BNI), 
a mature widespread fossiliferous paleosol 
unit at the top of the Salamanca Formation, 
corresponding to the top of Chron C28n. The 
diverse paleo botanical assemblages from 
this area are here assigned to C28n (64.67–
63.49 Ma), ~2–3 million years older than 
previously thought, adding to growing evi-
dence for rapid Southern Hemisphere fl oral  
recovery after the Cretaceous-Paleogene 

extinction. Important Peligran and “Carod-
nia” zone vertebrate fossil assemblages from 
coastal BNI and Peñas Coloradas exposures 
are likely older than previously thought and 
correlate to the early Torrejonian and early 
Tiffanian North American Land Mammal 
Ages, respectively.

INTRODUCTION

During the Paleocene Epoch (66.0–56.0 Ma; 
Gradstein et al., 2012), the Earth system expe-
rienced extreme variability that exposed it to 
unusual boundary conditions. The base of the 
Paleocene is characterized by recovery from a 
bolide impact and mass extinction associated 
with the Cretaceous-Paleogene (K-Pg) bound-
ary (e.g., Schulte et al., 2010). Paleocene cli-
mates were characterized by gradual cooling 
to minimum values at 60–58 Ma, followed by 
long-term warming (Zachos et al., 2001). The 
Paleocene ended with the onset of an extreme, 
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yet transient, global warming event called the 
Paleocene-Eocene Thermal Maximum (PETM), 
which represents one of the largest perturbations 
to the carbon cycle of the last 100 million years 
(Kennett and Stott, 1991; Sluijs et al., 2007; 
McInerney and Wing, 2011). Understanding the 
causes and effects of such extreme Earth system 
variability in the geological past requires well-
resolved stratigraphic records from all the major 
continents and oceans. Although the Paleocene 
of the South American continent is becoming 
better documented with respect to fossils and 
sedimentary environments, the chronostratigra-
phy of most units is poorly resolved, and thus 
the associated fossil and sedimentary records 
cannot be precisely compared to similar records 
from other parts of the world (Bond et al., 1995; 
Flynn and Swisher, 1995; Gelfo et al., 2009; 
Woodburne et al., 2013).

The shallow marine Salamanca Formation 
is the stratigraphically lowest Cenozoic geo-
logical unit in the San Jorge Basin of central 
Pata gonia (Argentina) and has long been stud-
ied for its rich fossil record of marine micro-
organisms (Frenguelli, 1936; Camacho, 1954, 
1967; Méndez , 1966; Masiuk, 1967; Bertels, 
1975; Matheos et al., 2005), plants (Berry, 1937; 
Archangelsky, 1973, 1976; Petriella and Arch-
angelsky, 1975; Archangelsky and Zamaloa, 
1986; Zamaloa and Andreis, 1995; Matheos 
et al., 2001; Iglesias et al., 2007; Brea et al., 
2008), mammals (Pascual et al., 1992, 2002; 
Bonaparte et al., 1993; Bonaparte and Morales, 
1997; Gelfo and Pascual, 2001; Gelfo, 2007; 
Gelfo et al., 2007, 2008; Forasiepi and Marti-
nelli, 2003; Gurovich, 2008), reptiles (Bona and 
de la Fuente, 2005; Bona, 2007; Sterli and de la 
Fuente, 2012), and marine macro faunas (Chebli 
and Serraiotto, 1974; Andreis, 1977; Parma and 
Casadío, 2005). Despite preserving one of the 
most complete Paleocene stratigraphic and pale-
ontological records from all of South America, 
the Sala manca’s precise age remains poorly 
resolved. Some studies have suggested that its 
base ranges into the Cretaceous (e.g., Legarreta 
and Uliana, 1994; Gelfo et al., 2009), whereas 
others indicate that its top ranges up to the late 
Paleocene (e.g., Foix et al., 2012). Given that the 
Salamanca Formation is in places less than 50 m 
in total thickness, this represents signifi cant 
chronostratigraphic uncertainty. Understanding 
the age of the Salamanca is complicated further 
by the great distances (>300 km) over which it 
is exposed and its transgressive character, cre-
ating the possibility of signifi cant diachroneity 
between different parts of the basin.

For this study, we gathered new fi eld data and 
applied a wide variety of geochronological tools 
to better date the Salamanca Formation and 
lower Río Chico Group in the western part of 

the San Jorge Basin near the city of Sarmiento, 
where important paleobotanical sites are located 
(Berry, 1937; Matheos et al., 2001; Iglesias 
et al., 2007; Fig. 1). We compare these results 
with previous data from other areas of the basin 
to better defi ne the time scale of biotic recovery 
in South America after the K-Pg mass extinction 
and help constrain the age of other important 
early Paleogene fossil sites, including vertebrate 
fossil assemblages known from exposures of 
these lithologic units farther to the east.

GEOLOGICAL SETTING

The San Jorge Basin is situated in Chubut 
and Santa Cruz Provinces of Argentina, between 
44° and 47°S and 66° and 71°W (Fig. 1). The 
basin is bounded by the Somuncura massif to 
the north, the Deseado massif to the south, the 
Andean Cordillera to the west, and the continen-
tal margin of the Atlantic Ocean to the east (Syl-

wan, 2001). Formation of the San Jorge Basin 
is associated with the Jurassic initial breakup 
of Gondwana, producing an east-west–oriented 
extensional intracratonic trough formed on 
Paleozoic continental crust (Fitzgerald et al., 
1990; Spalletti and Franzese, 2007). Infi lling of 
half grabens with volcaniclastic and lacustrine 
sediments led to the formation of the Jurassic 
Marifi l Complex and Lower Cretaceous Las 
Heras Group. Continued extension during the 
rest of the Cretaceous resulted in the deposition 
of the Chubut Group (Figari et al., 1999; Spal-
letti and Franzese, 2007; Foix et al., 2012).

The shallow marine Salamanca Formation 
overlies the Chubut Group, representing a Paleo-
cene transgression of the Atlantic Ocean (Fig. 2). 
It consists dominantly of sandstones (some glau-
conitic), siltstones, and mudstones and varies in 
thickness between <50 m to >150 m (Feruglio, 
1949; Andreis et al., 1975; Matheos et al., 2005; 
Comer, 2011). Feruglio (1949) recognized four 
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Figure 1. Map showing study area near Sarmiento, Argentina (Patagonia). (A) Map of 
Argen tina showing general location of San Jorge Basin. (B) Map showing approximate out-
line of San Jorge Basin (dark line) and location of study area (box) as well as other sites 
mentioned in text. (C) Map of study area showing outcrops of Salamanca Formation and 
Río Chico Group and location of sampling sites for this study: PL—Palacio de los Loros; 
OR—Ormaechea; LF—Las Flores; RG—Rancho Grande; La Angostura Basalt—location 
of basalt sample near Estancia La Angostura that was dated here using 40Ar/39Ar analyses.
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lithologic units within the Salamanca: Lignitífero, 
Glauconítico, Fragmentosa, and Banco Verde. 
Andreis et al. (1975) later divided the Salamanca 
Formation into a lower Bustamante Member 
and upper Hansen Member, the latter of which 
included the Fragmentosa, Banco Verde, and 
overlying Banco Negro Inferior (BNI), a wide-
spread, dark-colored paleosol unit that marks 
the transition from shallow marine/estuarine 
conditions of the Salamanca Formation to con-
tinental, fl uviolacustrine deposits of the overly-
ing Las Violetas (not exposed in our study area), 
Peñas Coloradas, Las Flores, and Koluel-Kaike 
Formations of the Río Chico Group (Feruglio, 
1949; Legarreta and Uliana, 1994; Raigemborn 
et al., 2010). We follow Andreis et al. (1975) and 
include the BNI in the Salamanca Formation 
because sedimentological studies indicate that 
they both formed as part of an overall shallowing-

upward, tidally infl uenced, nearshore-estuarine 
system with a marine fl ooding surface at the base 
and the BNI at the top representing a widespread, 
prograding coastal swamp (Legarreta and Uliana, 
1994; Matheos et al., 2001, 2005; Raigemborn 
et al., 2010; Comer, 2011).

Several important fossil plant collections 
have been reported from the Salamanca For-
mation. These collections include the original, 
small compression fl ora from Palacio de los 
Loros composed of 11 species (Berry, 1937), 
several palynological and fossil wood studies 
(Romero, 1968; Archangelsky, 1973; Archan-
gelsky and Romero, 1974; Petriella and Archan-
gelsky, 1975; Archangelsky and Zamaloa, 1986; 
Brea et al., 2005, 2008; Matheos et al., 2005), 
and most recently, two large, quantitatively 
sampled compression fl oras from the Palacio de 
los Loros section (Iglesias et al., 2007; Escapa 
et al., 2013). These last collections show that 
fl oral diversity in this part of South America 
had already risen well above that documented 
for comparable assemblages in North America 
by Salamanca time. Also of great interest is that 
abundant fossil vertebrates are preserved in the 
BNI along the present-day coast (Pascual et al., 
1992, 2002; Bonaparte et al., 1993; Bonaparte 
and Morales, 1997; Gelfo and Pascual, 2001; 
Bona and de la Fuente, 2005; Bona, 2007; 
Gelfo, 2007; Gelfo et al., 2007, 2008; Gurovich, 
2008; Sterli and de la Fuente, 2012). The unique 
mammalian assemblages from the BNI include 
an immigrant monotreme, non-therians from 
endemic survivor lineages of the Cretaceous, 
marsupials, and placentals, thus representing 
one of the most informative records of vertebrate 
evolution from the early Paleogene of South 
America and forming the basis of the Peligran 
South American Land Mammal Age (SALMA; 
Bonaparte et al., 1993; Gelfo et al., 2009).

Previous studies of the Salamanca Formation 
have indicated a mid- to late Danian age (forami-
niferal Zone P1C) based on planktonic foraminif-
eral assemblages found at the Puerto Visser and 
Punta Peligro localities in the eastern part of 
the basin, near the modern-day coast (Méndez, 
1966; Bertels, 1975). Barcat et al. (1989), how-
ever, assigned a Maastrichtian age to the base 
of the Salamanca Formation based on calcare-
ous nannofossils from a drill hole located in the 
center of the basin near the coast (Lomita de la 
Costa). This is based on fossil identifi cations in 
an internal oil company report, making them 
diffi cult to verify, and the reported taxa are not 
convincingly age diagnostic. Attempts to refi ne 
the age of the Salamanca using radiometric and 
paleomagnetic techniques have thus far yielded 
ambiguous results. Marshall et al. (1981) used 
K-Ar ages of 64.0 ± 0.8 Ma and 62.8 ± 0.8 Ma 
for a basalt fl ow underneath the base of the Sala-

manca (re-dated here) and paleomagnetic data 
to correlate the BNI to Chron C26r at the Cerro 
Redondo and Punta Peligro localities along the 
coast, indicating an approximate age for the BNI 
of 62 Ma. These results were reinterpreted by 
Bonaparte et al. (1993) who suggested that the 
BNI correlates to somewhere within Chron C27, 
with the middle of C27r as their best estimate. 
Moreover, Somoza et al. (1995) found the BNI 
to be characterized by normal polarity at the 
Las Violetas and El Gauchito localities (north of 
Cerro Redondo and Punta Peligro on the coast; 
Fig. 1) and correlated it to Chron C27n. Updated 
time scales have also signifi cantly changed the 
estimated ages for the chron boundaries since 
these original studies were published (Gradstein 
et al., 2012). In summary, a range of age esti-
mates for the upper and lower limits of the Sala-
manca Formation (including the BNI) have been 
proposed, extending from the Maastrichtian to 
the Selandian (ca. 60–67 Ma).

Results reported here come from the west-
ern part of the basin near the city of Sarmiento 
(Fig. 1). Motivations for working in this area 
include (1) the presence of macrofl oras in the 
studied sections that appear to be unique on the 
Gondwanan continents for their combination 
of early Paleocene age (tested here), excellent 
preservation and abundance, and unusually high 
diversity for the time period (Iglesias et al., 
2007; Brea et al., 2008), and (2) the need to 
develop a stratigraphic anchor for the extensive, 
and long-studied, overlying sequence of Ceno-
zoic vertebrates in the BNI, Río Chico Group, 
and Sarmiento Formation, which is the richest 
in the Southern Hemisphere (Ameghino, 1906; 
Simpson, 1935a, 1935b, 1950, 1980; Madden 
et al., 2010; Woodburne et al., 2013). Our study 
is based on (Fig. 1): two adjacent, correlated 
stratigraphic sections at Bosque Petrifi cado José 
Ormaechea (OR; Dromedary Hill and Cerro 
Colorado); two adjacent, correlated sections at 
Palacio de los Loros (PLa and PLb); isolated 
sections of Salamanca Formation at Rancho 
Grande (RG) and Peñas Coloradas Formation at 
Las Flores (LF), which each contain important 
(currently unpublished) macrofl oras that extend 
the knowledge of plant evolution in the region 
(Iglesias, 2007); and a new isotopic age determi-
nation for the basalt near Estancia La Angostura 
that was fi rst analyzed by Marshall et al. (1981).

METHODS

Microfossil Biostratigraphy

Foraminifera
Samples from the Dromedary Hill section 

at Ormaechea (OR1013–OR1019) and the 
Rancho  Grande section (RG1001–RG1003) 
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were soaked and manually disaggregated in a 
beaker of tap water, washed over a 63 μm sieve, 
and dried in a convection oven at 50 °C. After 
initial searches on the picking tray for forami-
nifera, the sieved residue (~2–3 g) was poured 
and stirred in a beaker containing carbon 
tetra chloride, and the heavy liquid fl oat was 
decanted into fi lter paper that, once dried, was 
scanned to identify and pick biogenic material. 
Scanning electron microscopy (SEM) was per-
formed on a Phillips XL-30 ESEM with a LaB6 
electron source at the U.S. National Museum of 
Natural History.

Calcareous Nannofossils
Sample OR1016 was also prepared for analy-

sis of calcareous nannofossils at Pennsylvania 
State University following Bown and Young 
(1998). This sample was chosen because SEM 
images of the planktonic foraminifera showed 
preserved nannofossils, many in attachment to 
the studied foraminifera. In addition to the SEM 
images, small amounts of the sediment were 
disaggregated and suspended in buffered (pH 
~8) distilled water. This suspension was allowed 
to settle for 1–2 min for sand- and silt-sized 
particles to separate from the solution. A micro-
scope slide was made from the resulting suspen-
sion, which was observed under cross-polarized 
light at different magnifi cations (1000×–1600×) 
for at least fi ve random transects of the slide 
(>100 fi elds of view) to increase the likelihood 
of detecting very rare taxa.

Dinofl agellate Cysts
Twenty palynological samples from all four 

sections at Ormaechea and Palacio de los Loros 
were processed for dinofl agellate cysts. Sample 
processing followed standard protocols of the 
Laboratory of Palaeobotany and Palynology of 
Utrecht University (see GSA Data Repository 
for details1).

Terrestrial Palynomorphs
A set of 24 samples from the four sections 

at Ormaechea and Palacio de los Loros were 
processed  using standard palynological tech-
niques (HCl, HF, heavy liquid ZnCl2 and HNO3) 
and mounted in polyvinyl alcohol at Universi-
dad de Buenos Aires. Observational and photo-
graphic equipment included a Dialux 20 micro-
scope with a Leica EC3 digital camera at the 
Universidad de Buenos Aires, and a Philips XL 
30 scanning electron microscope at the Museo 
Argentino de Ciencias Naturales “Bernardino 
Rivadavia”. Slides and residues are archived 

in the palynological collection of the Departa-
mento de Ecología, Genética y Evolución, Fac-
ultad de Ciencias Exactas y Naturales, Universi-
dad de Buenos Aires, as BAFCB p.m. 254–258.

Isotope Geochronology

40Ar/39Ar
Marshall et al. (1981) fi rst reported a basalt 

fl ow above the Bajo Barreal Formation (Chubut 
Group), but below the unconformable contact 
with the Salamanca Formation, in the area along 
the Río Chico, just east of its outfl ow from Lake 
Colhué Huapi (Fig. 1). Whole rock 40K-40Ar 
isotopic geochronology on two samples from 
this basalt previously yielded ages reported 
as 64.0 ± 0.8 Ma and 62.8 ± 0.8 Ma (Marshall 
et al., 1981). We resampled this same basalt, 
here called La Angostura Basalt, in order to 
determine a modern 40Ar/39Ar laser incremen-
tal heating age for this unit, given its ability to 
provide a fi rm maximum age for the Salamanca 
and the large uncertainties associated with the 
original 40K-40Ar ages. Our sample (LF1007) 
came from very close to Estancia La Angos-
tura at the outlet of Lake Colhué Huapi (Table 
DR1). Although we did not observe the contact 
between the basalt and the overlying Salamanca 
Formation in this area, subsurface resistivity logs 
from nearby oil wells are consistent with a later-
ally discontinuous basalt fl ow between the Sala-
manca and underlying Bajo Barreal, supporting 
the stratigraphic placement shown in Marshall 
et al. (1981). Samples of purifi ed groundmass 
were incrementally heated using the methods 
of Smith et al. (2006). Argon isotope analyses 
were done using a MAP 215-50 mass spectrom-
eter at the University of Wisconsin, and the data 
were reduced using ArArCalc  software version 
2.5 (http:// earthref .org /ArArCALC/). The age 
uncertainties reported here refl ect analytical 
contributions only, at the 2σ level; the decay 
constants used are those of Min et al. (2000; see 
Supplementary Methods for details).

U-Pb LA-ICP-MS
Three samples from tuff layers within the 

Peñas Coloradas Formation at Palacio de los 
Loros (PL-1) and Ormaechea Park (OR-20, 
OR-21), and one from the upper Salamanca For-
mation at Ormaechea Park (OR-Tuff-2012.1), 
were processed for laser ablation–inductively 
coupled plasma–mass spectrometry (LA-ICP-
MS) U-Pb geochronology (Table DR1; Fig. 
DR1). The samples from the Peñas Coloradas 
Formation at Ormaechea Park were from the 
same approximate level as those that previously 
generated an 40Ar/39Ar isochron age of 57.8 ± 
6.0 Ma (Iglesias et al., 2007). Zircons were 
separated using standard gravimetric and mag-

netic techniques, handpicked under a binocu-
lar microscope, mounted in epoxy resin, and 
imaged by cathodoluminescence (SEM-CL) 
prior to analysis. Isotopic measurements were 
conducted using a Photon Machines Analyte 
G2 Excimer ablation system coupled to a Nu-
instruments high resolution–inductively coupled 
plasma–mass spectrometry (HR-MC-ICP-MS) 
at the Arizona Laserchron Center, University of 
Arizona, following the methodologies described 
by Gehrels et al. (2008) and Cecil et al. (2011; 
see Supplementary Information for details). 
Systematic uncertainties for the calculated U-Pb 
ratios were derived from the reproducibility of 
the measurements made on our Sri Lanka stan-
dard. Final ages and uncertainties were calcu-
lated using the Isoplot Excel macro of Ludwig 
(2003), and quoted errors for the age calcula-
tions are presented as ± X [Y], where X refers to 
the analytical uncertainty only, and Y represents 
the analytical and systematic uncertainties com-
bined. Zircons from the Fish Canyon Tuff with 
an isotope dilution–thermal ionization mass 
spectrometry (ID-TIMS) age of ca. 28.4 Ma 
(Schmitz and Bowring, 2001) were analyzed as 
secondary standards during the same analytical 
session, where six measurements on three dif-
ferent crystals resulted in a 206Pb/238U weighted 
mean age of 28.3 ± 0.9 Ma (mean square 
weighted deviation [MSWD] = 0.22). Eleven 
zircon crystals from the PL-1 tuff sample (Fig. 
DR1A), which is closest to the most produc-
tive plant quarry, PL2 (Iglesias et al., 2007), 
were selected on the basis of their LA-ICP-MS 
ages and CL images for additional chemical 
abrasion-thermal ionization mass spectrometry 
(CA-TIMS) analyses.

U-Pb CA-TIMS
The eleven zircons selected on the basis 

of the LA-ICP-MS results from the PL-1 tuff 
sample were subjected to a modifi ed version of 
the chemical abrasion TIMS method of Mattin-
son (2005). U-Pb dates and uncertainties were 
calculated using the algorithms of Schmitz and 
Schoene (2007) and the U decay constants of 
Jaffey et al. (1971). Quoted errors are 2σ in 
the form ± X(Y)[Z], where X is solely analyti-
cal uncertainty, Y is the combined analytical 
and tracer uncertainty, and Z is the combined 
analyti cal, tracer, and 238U decay constant uncer-
tainty (see Supplementary Methods for addi-
tional details).

Paleomagnetism

Paleomagnetic samples were collected from 
60 sample sites within the stratigraphic sections 
at Ormaechea, Palacio de los Loros, Rancho  
Grande, and Las Flores. Formations sampled 

1GSA Data Repository item 2014051, including 
supplementary methods, fi gures, and tables, is avail-
able at http:// www .geosociety .org /pubs /ft2014 .htm 
or by request to editing@ geosociety .org.
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included the upper Bajo Barreal (Chubut 
Group), Salamanca, Peñas Coloradas, and Las 
Flores. Stepwise alternating fi eld (AF) and 
thermal demagnetization methods were used 
on a preliminary set of samples and indicated 
that AF demagnetization with a peak fi eld of 
100 mT was successful at isolating natural 
remanent magneti za tion (NRM) components 
in the majority of samples. However, samples 
from oxidized red beds within the Río Chico 
Group were stepwise thermally demagnetized 
up to 690 °C. Magnetic mineralogy was deter-
mined by acquisition of isothermal remanent 
magnetization (IRM) up to a peak fi eld of 1.1 T, 
followed by stepwise demagnetization of three 
orthogonal IRMs of 1.1 T, 0.4 T, and 0.12 T up to 
690 °C (Lowrie, 1990). Paleomagnetic analyses 
were performed using an HSM2 SQUID cryo-
genic magnetometer, a Molspin tumbling AF 
demagnetizer, an ASC Model TD48-SC thermal 
demagnetizer, and an ASC IM10 impulse mag-
net in the paleomagnetics lab at the University 
of New Hampshire.

RESULTS

Microfossil Biostratigraphy

Foraminifera
Extremely rare but very well-preserved fora-

minifera were found only in samples OR1016 
and RG1002 (Table 1). The silty claystone 
sample OR1016 (basal Salamanca Formation in 
Ormaechea Park; Table DR2) yielded one ben-
thic foraminifer assigned to Gyroidinoides niti-
dus (Fig. 3.1) and eight planktonic specimens 
assigned to Globanomalina planocompressa 
(6 specimens; Figs. 3.2, 3.4), Dipsidripella? 
sp. (1 specimen; Fig. 3.3), and one unknown 
taxon. Co-occurrence of the foraminifera with 
common tri-radiate sponge spicules, and their 
extraordinarily good preservation, indicate that 
these specimens were deposited in situ within 
a shelfal marine depositional environment. 
The small sizes of the planktonic foraminifera 
and the patchy distribution of wall pores in the 
G. planocompressa specimens indicate they 
did not reach reproductive maturity, which 
is consistent with the interpretation that they 
were deposited in a shallow marine setting. In 
the clay-rich siltstone sample RG1002, several 
large-sized benthic specimens were found (e.g., 

Fig. DR2), but no planktonic foraminifera or 
other microfossil constituents were observed. 
The large (0.4–0.6 mm diameter) and robust 
shells, absence of shell infi lling or recrystalliza-
tion, and occurrence with silt-sized grains and 
authigenic glauconite argue that the specimens 
were not reworked from a signifi cantly older, 
lithifi ed sediment source. Nonetheless, abrasion 
of the fi nal chambers may indicate some degree 
of local sediment reworking. The specimens are 
tentatively assigned to Cribrorotalia?, but the 
presence of deeply incised umbilical sutures 
and raised spiral sutures, as well as the reported 
stratigraphic age range of this genus from the 
late Eocene through middle Miocene (Loeblich 
and Tappan, 1988), suggest this may belong 
to a different, but related taxon. Nonetheless, 
this form is characteristic of species found 
only in shallow, inner to middle shelf paleo-
environments.

The occurrence of G. planocompressa in 
sample OR1016 indicates an early Danian age 
based on its recorded range from upper plank-
tonic foraminifer Zone Pα through middle Zone 
P1c (Olsson et al., 1999). Although G. plano-
compressa has not been recorded elsewhere in 
Patagonia, its occurrence in the Ormaechea sec-
tion is consistent with reports of Danian plank-
tonic foraminifera, including Parasubbotina 
pseudobulloides, Subbotina triloculinoides, 
and Globoconusa daubjergensis, from the Sala-
manca Formation in the eastern coastal region 
of Chubut (Méndez, 1966; Masiuk, 1967; Ber-
tels, 1975). Absence of these latter species in 
OR1016 may have been the result of shallower 
marine conditions in the shoreward region of the 
San Jorge Basin, or facies progradation across 
the basin causing the Salamanca Formation 
to be somewhat time-transgressive from west to 
east. Assignment of the specimen illustrated 
in Figure 3.3 to Dipsidripella? is based on the 
presence of a strongly muricate wall texture, 
incised sutures, and extra-umbilical position of 
the aperture. If this taxonomic placement is cor-
rect, this occurrence considerably predates the 
age range for the oldest species of the genus, 
Dipsidripella danvillensis, which is from the 
middle–upper Eocene (Pearson et al., 2006). In 
summary, the foraminiferal data from sample 
OR1016 in the lower Salamanca Formation at 
Ormaechea indicate an early Danian age (Zone 
Pα–middle Zone P1c).

Calcareous Nannofossils
Nannofossils are present but very rare and 

poorly preserved in sediment sample OR1016. 
Calcisphere (thoracosphere) fragments were the 
most commonly observed nannofossils (Fig. 
DR3A). Coccolithus cavus, Cruciplacolithus 
primus, and Prinsius dimorphosus are also pres-
ent at very rare abundances (Figs. DR3B–DR3D 
respectively; Table 1). The presence of these 
taxa indicates an early Danian age for the sedi-
ment, likely in the NP2 biozone (Martini, 1971). 
Nannofossils observed in the SEM micrographs 
also support the early Danian age assessment. 
Although distinct nannofossil biostratigraphic 
indicator taxa are lacking in these images, Zeu-
grhabdotus sigmoides, Cyclagelosphaera sp., 
and Biscutum sp. were observed (Figs. DR3E–
DR3F), all known K-Pg survivors (e.g., Bown, 
2005). Several securely Cretaceous taxa are also 
present in the SEM micrographs, including Neph-
rolithus frequens and Staurolithites (Fig. DR3F). 
However, the lack of other important Cretaceous 
biomarkers and greater abundance of known 
K-Pg survivors suggest that the Cretaceous-type 
nannofossils were reworked. Overall, the nanno-
fossils from sample OR1016, lower Salamanca 
Formation at Ormaechea Park, are most consis-
tent with an early Danian age (NP2 biozone) and 
also contain a reworked Cretaceous component.

Dinofl agellate Cysts
Of the 20 samples processed for dinocysts, 

only two were productive. Sample OR1016 
contains, along with pollen and spores (see 
next section), an abundant and diverse dinocyst 
assemblage. Age-diagnostic species include 
Cyclapophysis monmouthensis, Senonias-
phaera inornata, Damassadinium californicum, 
Trithyrodinium evittii, and Palaeoperidinium 
pyrophorum (Table 1; Fig. DR4). These species 
together are typical for earliest Danian strata 
worldwide (Williams et al., 2004). Other species 
present in this sample are Lentinia sp., Cero-
dinium sp., Palaeocystodinium golzowense, 
Areoligera tauloma, Glaphyrocysta pastielsii, 
Tanyosphaeridium sp., and Spiniferites sp. The 
abundant dinocysts in sample OR1016 com-
prise an assemblage that is typical for an earliest 
Danian marine shelf (Pross and Brinkhuis, 2005) 
and suggest a major transgression in this area by 
the earliest Danian (Scasso et al., 2012). Normal 
marine conditions prevailed, however nutrient 

TABLE 1. BIOSTRATIGRAPHICALLY SIGNIFICANT MICROFOSSILS RECOVERED FROM THE BASAL SALAMANCA 
FORMATION NEAR SARMIENTO, ARGENTINA, INDICATING AN EARLY DANIAN AGE

floniDelpmaS slissofonnansuoeraclaCarefinimaroFsetallega
OR1016 Senoniasphaera inornata, Cyclapophysis monmouthensis, 

Damassadinium californicum, Trithyrodinium evittii, 
Palaeoperidinium pyrophorum, Tanyosphaeridium, Spiniferites, 
Cerodinium, Lentinia, Palaeocystodinium

Gyroidinoides nitidus, Dipsidripella 
sp., Globanomalina 
planocompressa

Coccolithus cavus, Cruciplacolithus primus, 
Prinsius dimorphosus, Zeugrhabdotus sigmoides, 
Cyclagelosphaera, Biscutum, Nephrolithus frequens, 
Staurolithites 
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input was probably large given the relatively 
high abundance of (presumed heterotrophic) 
peridinioid dinocysts, such as Cerodinium, Len-
tinia, and Palaeocystodinium compared to (pre-
sumed autotrophic) gonyaulacoid cysts (Sluijs 
et al., 2005). Sample PL1019 (basal Peñas Colo-
radas Formation, Palacio de los Loros; Table 

DR2) is dominated by terrestrial palynomorphs 
and the green alga Pediastrum (see next sec-
tion), but the dinocyst Senegalinium is also com-
mon. In this sample, the abundant pollen and 
spores in combination with the high abundance 
of Pediastrum suggest a high input of terrestrial 
and aquatic organic matter, but the presence of 

Senegalinium suggests continued marine infl u-
ence, albeit at low salinities (Brinkhuis et al., 
2006; Sluijs and Brinkhuis, 2009). The absence 
of dinocysts in all other samples is probably due 
to syndepositional overexposure to oxygen and 
physical abrasion associated with very shallow 
or non-marine environments.

Figure 3. Early Paleocene foraminifera from sample OR1016, showing umbilical, edge, and spiral views. Planktonic specimens are probably 
juveniles, as evidenced by their small size and widely and unevenly scattered wall pores. (1a–1c) Benthic foraminifer Gyroidinoides nitidus 
(Reuss). (2a–2c) Planktonic foraminifer Globanomalina planocompressa (Shutskaya, 1965). (3a–3c) Planktonic foraminifer Dipsidripella? 
sp. (4a–4c) Planktonic foraminifer Globanomalina planocompressa (Shutskaya, 1965).
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Terrestrial Palynomorphs
Six of the 24 samples yielded terrestrial 

palynomorphs, and fi ve of those had abun-
dant, diverse, and well-preserved palynofl oras 
(Table 2, Fig. 4). A total of 63 pollen and spore 
taxa were recognized. Angiosperm pollen was 
highly diverse at all levels examined and repre-
sents more than 50% of the total taxa; pterido-
phyte and bryophyte spores represent ~30% and 
gymnosperm (conifer) pollen represents ~13%. 
In spite of the relatively low diversity of coni-
fers, two different species (and probably new 
species) of Classopollis (Figs. 4E–4F), pollen 
produced by members of the extinct family 
Cheirolepidiaceae, are the most abundant type 
in almost all the assemblages and dominate in 
samples PL1011 and OR1015–OR1017. Green 
algae were observed at two levels: cenobia 
of Pediastrum boryanum (Turp.) Menegh in 
PL1011 (also noted in the previous section for 
sample PL1019) and Zygnemataceae spores 
in OR1015.

Pollen and spores of the Salamanca Forma-
tion from other locations are known from sev-
eral earlier studies (Archangelsky, 1973, 1976; 
Archangelsky and Romero, 1974; Archangelsky 
and Zamaloa, 1986; Zamaloa and Andreis, 1995; 
Scafati et al., 2009), but the data reported here 
are placed in a greatly improved chronologic 
framework and thus have increased biostrati-
graphic usefulness. The samples analyzed here 
contain many previously known palynomorphs 
as well as a few taxa that are recorded for the fi rst 
time in the Salamanca Formation (Table 2). Two 
of these new records, Pediastrum cenobia and 
Kuylisporites waterbolkii Potonié spores, are of 
particular interest. The presence of P. boryanum 
in PL1011 indicates a freshwater paleoenvi-
ronment at the time of growth (Batten, 1996), 
although these algal remains are also found in 
sediments deposited on or beyond the marine 
continental shelf as part of allochthonous asso-
ciations brought by streams from inland areas 
(Brenac and Richards, 1996). Additionally, the 
presence of representatives of Zygnemataceae 
(in OR1015) indicates depositional conditions 
of shallow, stagnant, clean, fresh water lakes or 
ponds (van Geel and Grenfell, 1996). Spores 
of K. waterbolkii closely resemble those pro-
duced by extant species of Cnemidaria Presl. 
(Cyatheaceae). These tree ferns grow today 
in Central America, the Greater Antilles, and 
northern South America (Tryon et al., 1982). 
The known fossil record of Cnemidaria-type 
spores indicates a wide Gondwanan distribution 
(except for Africa) during the Cenozoic. They 
were present in Australia and New Zealand 
from the Eocene to the Miocene, in Antarctica 
during the middle Eocene (Mohr and Lazarus, 
1994), and in Tierra del Fuego in sediments of 

questionable Eocene age (Zetter et al., 1999). 
The Salamanca Formation record represents 
the oldest known worldwide for the species. 
Additionally, according to Mohr and Lazarus 
(1994, p. 765), K. waterbolkii is an “indicator of 
warm-temperate, not fully tropical climate.” As 
Archangelsky and Romero (1974) pointed out, 
the presence of Classopollis pollen in sediments 
of the Salamanca Formation represents the last 
record for the genus in Patagonia, a statement 
that has been confi rmed by more recent studies 
in several basins of the region, including a simi-
lar “Classopollis spike” found in early Danian 
littoral sediments of the Lefi pán Formation in 
northwestern Chubut (Barreda et al., 2012). The 
high palynological diversity and good preserva-
tion of the analyzed assemblages indicate a local 
source of the pollen and spores, which were 
produced by trees, shrubs, and herbs growing 
inland and near the shore. The mixture of the 
aquatic components (green algae) and marine 
dinofl agellates is consistent with an estuarine 
or other river-infl uenced shallow shelf environ-
ment for the Salamanca (Comer, 2011).

Isotope Geochronology

40Ar/39Ar
The incremental heating experiment on the 

sample LF1007 from the basalt intercalated 
between the Bajo Barreal and Salamanca For-
mations yielded a well-defi ned plateau with a 
weighted mean age of 66.95 ± 0.37 Ma, which 
comprises ~97% of the 39Ar released (Fig. 5; 
Table DR3). The initial fi ve heating steps of the 
experiment gave ages that were slightly younger, 
possibly indicating a small degree of radiogenic 
argon loss. The 17-step isochron defi ned an age 
of 67.31 ± 0.55 Ma with a MSWD of 0.31 and 
an initial 40Ar/36Ar ratio of 294.7 ± 0.9. This iso-
chron age is preferred, rather than the apparent 
plateau age, because it takes into account the 
potential for a non-atmospheric trapped compo-
nent. This 40Ar/39Ar age (67.31 ± 0.55 Ma) for 
the La Angostura basalt is signifi cantly older 
than the K-Ar dates previously reported for the 
same unit (64.0 ± 0.8 Ma and 62.8 ± 0.8 Ma; 
Marshall et al., 1981), probably refl ecting 
inaccu rate measurement of 40Ar* or K content 
of the extremely large whole-rock samples that 
were melted for the original K-Ar analyses.

U-Pb LA-ICP-MS
Results from the twenty zircons that were 

analyzed from each of the tuff samples using the 
LA-ICP-MS method are shown in Table DR4. 
Calculated ages for Peñas Coloradas Formation 
samples from the PL-1 (Palacio de los Loros), 
OR-20, and OR-21 (Ormaechea) tuffs all 
overlapped within analytical uncertainty, thus 

supporting the idea that they represent coeval 
phases of volcanism in these two, 15.4-km-apart 
sampling areas and provide an important new 
chronostratigraphic marker. The age of igneous 
crystallization for the PL-1 tuff was estimated by 
this method to 61.48 ± 0.66 [0.82] Ma from 19 
equivalent 206Pb/238U dates (MSWD = 0.26; Fig. 
6A), later refi ned by the CA-TIMS analyses dis-
cussed below. The OR-20 tuff yielded an age of 
62.08 ± 0.83 [0.98] Ma (n = 16; MSWD = 0.41; 
Fig. 6C), while that of OR-21 was estimated to 
61.51 ± 0.88 [1.00] Ma (n = 16; MSWD = 0.34; 
Fig. 6D). The sample from the upper Salamanca 
Formation at Ormaechea (OR-Tuff-2012.1) had 
zircons with a wide range of calculated ages 
from 67.9 to 194.6 Ma, with two main clusters 
of 100–120 Ma and 140–150 Ma (Fig. DR5). 
These results for OR-Tuff-2012.1 are consistent 
with the zircons in this sample being detrital in 
origin, thus providing sedimentary provenance 
information for the Salamanca Formation rather 
than direct geochronological constraints. The 
younger cluster of zircons is consistent with a 
source in the lower part of the underlying Creta-
ceous Chubut Group, and the older, Late Juras-
sic–Early Cretaceous cluster could be associ-
ated with unroofi ng of arc volcanic rocks far 
to the west (Barcat et al., 1989; Sylwan, 2001; 
Spalletti and Franzese, 2007).

U-Pb CA-TIMS
Of the 11 zircon crystals from the PL-1 tuff 

that were chosen based on their LA-ICP-MS 
ages and CL images, three grains yielded resolv-
ably older ages (Table DR5) interpreted as hav-
ing a contribution from cores of signifi cantly 
older, xenocrystic zircon (z3) or only slightly 
older antecrystic zircon (z2, z8). Equivalent 
206Pb/238U dates were obtained from the remain-
ing eight crystals (Fig. 6B). The age of igneous 
crystallization for the PL-1 tuff (Peñas Colora-
das Formation at Palacio de los Loros) may be 
interpreted from the weighted mean 206Pb/238U 
date to be 61.984 ± 0.041(0.074)[0.100] Ma 
(n = 8; MSWD = 0.75).

Paleomagnetism

The acquisition of IRM in samples from the 
Salamanca Formation (OR1016 and OR1019) 
and Banco Negro Inferior (OR1022) showed 
rapid increases in intensity with saturation 
occurring around 0.2 T, indicating that the 
magnetic mineralogy is dominated by a low-
coercivity mineral like magnetite or greigite 
(Fig. DR6A). Demagnetization curves showed a 
gradual decrease in intensity with fi nal unblock-
ing temperatures of 580 °C, suggesting that mag-
netite is the dominant carrier of magnetic rema-
nence in these samples (Figs. DR6B–DR6D). 
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TABLE 2. TERRESTRIAL PALYNOMORPHS RECOVERED FROM SAMPLES IN THE SALAMANCA FORMATION NEAR SARMIENTO, ARGENTINA

3201RO6101RO5101RO1101LP2001LPelpmaS
Section/level† PL(a)/1.4 m PL(a)/30.4 m DH/3.3 m DH/5.1 m CC/–8.3 m

Bryophytes/pteridophytes
 1. Ceratosporites equalis xxx8591nnamtteD&noskooC
 2. Cicatricosisporites sp.* x
 3. Cingutriletes australis (Cookson) Archangelsky 1972 x
 4. Clavifera triplex xxx6691anitivohkloB)anitivohkloB(
 5. Kuylisporites waterbolkii x*6591éinotoP
 6. Cyathidites minor Couper 1953 x x x
 7. Cyathidites patagonicus xx2791ykslegnahcrA
 8. Dictyophyllidites concavus Harris 1965 x x x
 9. Gleichenidites x.ps
10. Laevigatosporites ovatus xx6491retsbeW&nosliW
11. Retitriletes austroclavatidites (Cookson) Doring et al. in Krutzsch 1963 x
12. Polypodiidites speciosus (Harris) Archangelsky 1972* x
13. Stereisporites antiquasporites (Wilson & Webster) Dettmann 1963 x
14. Trilites parvalatus Krutzsch 1959 x x x
15. Trilete verrucate* x
16. Trilete wth perisporium* x
17. Trilete 2* x
18. Trilete 3* x

Gymnosperms
 1. Classopollis xxxx.pps
 2. Dacrydiumites praecupressinoides (Couper) Truswell 1983 x x x x
 3. Microcachrydites antarcticus Cookson 1947 x x x
 4. Phyllocladidites mawsonii Cookson ex Couper 1953* x
 5. Podocarpidites elegans xxxx7791oremoR
 6. Podocarpidites marwickii xxx3591repuoC
 7. Podocarpidites rugulosus Romero 1977 x x x x
 8. Trichotomosulcites subgranulatus xxx3591repuoC

Angiosperms
 1. Ailanthipites cf marginatus Frederiksen 1983* x
 2. Arecipites minutiscabratus x8891enliM)erytnIcM( x
 3. Haloragacidites sp. x x
 4. Liliacidites variegatus Couper 1953 x x
 5. Liliacidites vermireticulatus xx6891aolamaZdnaykslegnahcrA
 6. Myrtaceidites sp. x
 7. Nothofagidites dorotensis Romero 1973 x
 8. Nothofagidites saraensis Menendez y Caccavari 1975 x
 9. Peninsulapollis gillii (Cookson) Dettmann & Jarzen 1988 x x x x
10. Peninsulapollis sp. x
11. Proteacidites sp. A* x x
12. Proteacidites sp. B* x x
13. Proteacidites sp. C* x
14. Proteacidites cf. fromensis Harris 1972* x
15. Proxapertites sp. x x x x
16. Psilatricolporites sp. x x
17. Restioniidites pascualii Archangelsky 1973 x x
18. Rhoipites baculatus Archangelsky 1973 x
19. Rousea microreticulata Archangelsky and Zamaloa 1986 x
20. Senipites tercrassata Archangelsky 1973 x
21. Tetrade reticulate* x
22. Tricolporate prolate sincolpate* x
23. 5–6 colporate prolate x
24. Triatriopollenites latefl exus Archangelsky 1973 xx
25. Tricolpites anguloluminosus Anderson 1960 x x
26. Tricolpites communis xxxx3791ykslegnahcrA
27. Tricolpites phillipsii Stover 1973* x
28. Tricolpites reticulatus xx9891nnamtteD&nezraJ)repuoC(
29. Tricolporate A (cluster) x
30. Tricolporate prolate (Apiaceae type) * x
31. Ulmoideipites patagonicus xxx3791ykslegnahcrA

Algae
 1. Pediastrum boryanum x*0481inihgeneM)nipruT(
 2. Zygnemataceae x
 3. Dinofl agellate cysts x x x

x—taxon present.
*Indicates fi rst record in Salamanca Formation.
†Indicates the local section and stratigraphic level for each sample (see Fig. 9 and Table DR2 for reference [see footnote 1]). PL—Palacio de los Loros; DH—Dromedary 

Hill; CC—Cerro Colorado.
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Figure 4. Microphotographs of selected terrestrial palynomorphs, Salamanca Formation. (A) Kuylisporites waterbolkii. (B) Clavifera triplex with 
scanning electron microscope (SEM). (C) Dictyophyllidites concavus. (D) Trilites parvalatus. (E–F) Classopollis sp., F with SEM. (G) Dacrydiu-
mites praecupressinoides. (H) Podocarpidites marwickii. (I) Podocarpidites rugulosus with SEM. (J–K) Arecipites minutiscabratus, K with SEM. 
(L) Liliaci dites vermireticulatus. (M) Proxapertites sp. (N) Ulmoideipites patagonicus. (O) Peninsulapollis gillii with SEM. (P) Tricolpites angulolumi-
nosus with SEM. (Q) Tricolpites communis. (R) Psilatricolporites sp. (S) Proteacidites sp. (T) Pediastrum boryanum with SEM. Scale bars = 10 µm.
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IRM analysis of samples from the red beds in 
the Peñas Coloradas Formation was not con-
ducted, but high unblocking temperatures of the 
NRM in these samples indicated hematite was 
the dominant magnetic carrier in these samples.

Characteristic remanent directions were cal-
culated using least squares analysis for sam-
ples where linear decay toward the origin was 
observed (Kirschvink, 1980; Figs. 7A–7C). 
However, several samples showed an initial 
decay followed by clustering of vector end-
points, and in these cases a Fisher mean was 
calculated to determine the characteristic direc-
tion of the sample (Fig. 7D). Characteristic 
directions were determined for three samples 
from each site, and a site mean was computed. 
The Watson (1956) test for randomness was 
then used to identify sites with signifi cant clus-
tering of sample directions (Table DR2). All 
results are reported in geographic coordinates, 
given that the beds are sub-horizontal and the 
small observed dips (<6°) could be deposi-
tional in nature. The mean direction of normal 
and inverted reverse polarity sites are within 
each other’s α95 circles of confi dence and pass 
the reversals test of Tauxe (1998), indicat-
ing that they are antipodal and that secondary 
NRM components have been removed from the 
samples (Fig. 8). A paleomagnetic pole with 
longitude/latitude of 36.5°/–84.5° (α95 = 6.3°) 
calculated from site virtual geomagnetic pole 
results from this study overlaps the 65 Ma pole 
for South America (13.7°/–82.0°, α95 = 3.6°; 
Besse and Courtillot, 2002), further supporting 
the primary nature of the remanent magnetiza-
tions in these samples.

Site mean directions reveal four polarity 
intervals in the measured sections from Ormae-
chea and Palacio de los Loros (Fig. 9). The 
Dromedary Hill section in Ormaechea Park 
contains a reversed and a normal polarity inter-
val in the Bajo Barreal Formation and a normal 
polarity interval in the Salamanca Formation 

that extends up through the BNI. The Cerro 
Colorado section in Ormaechea shows normal 
polarity for the upper Salamanca Formation 
and BNI with a reversal in the lower half of the 
Peñas Coloradas Formation, though the posi-
tion of this reversal is not well constrained due 
to sparse sampling in this part of the section. A 
normal polarity interval is then observed, begin-
ning in the base of the Las Flores Formation. 
Correlative sections at Palacio de los Loros (a 
and b, see Fig. 9) show a very similar reversal 
pattern, with normal polarity for the uppermost 
Bajo Barreal Formation and the full Salamanca 
Formation (up through the BNI) followed by a 
reversal in the lower Peñas Coloradas Forma-
tion (Fig. 9). Results from the Las Flores area 
are also consistent with the Ormaechea record in 
having a normal polarity site in the upper Bajo 
Barreal Formation (just below the dated basalt) 
and two normal polarity sites in the lower Peñas 
Coloradas Formation, where a macrofl oral site 
is located (Table DR2). Results from two sites 
in the Salamanca Formation from the Rancho 
Grande section, containing another paleobotani-
cal locality, are indicative of normal polarity, 
and thus consistent with results from Ormae-
chea and Palacio de los Loros, but these do not 
pass the Watson test for randomness and so are 
less reliable.

DISCUSSION

Chronostratigraphy

The new magnetostratigraphic, biostrati-
graphic, and geochronological data reported 
here can be combined with other published 
information within a sequence stratigraphic 
framework to correlate the Bajo Barreal–Sala-
manca–Río Chico succession in the study area 
to the geomagnetic polarity time scale (GPTS; 
Gradstein et al., 2012; Fig. 10). The existence of 
a lithologic unconformity at the contact between 

the Bajo Barreal Formation and the overlying 
Salamanca Formation, as well as the lack of 
evidence for a reversed polarity interval that 
could correspond to Chron 29r (which spans the 
K-Pg boundary), makes it almost certain that 
the normal polarity associated with those two 
units represents different chrons separated by 
a hiatus. The Bajo Barreal Formation is poorly 
constrained in time but is generally thought 
to be Cenomanian–Turonian in age based on 
40Ar/39Ar ages reported from it and the overly-
ing Laguna Palacios Formation (Bridge et al., 
2000), as well as its dinosaur fauna (Lamanna 
et al., 2002; Casal et al., 2009; Navarrete et al., 
2011). Our results indicate a reverse-to-normal 
polarity transition in the uppermost Bajo Bar-
real in the study area. Because the Cretaceous 
Normal Superchron (C34n) lasts from the 
Aptian to the Santonian-Campanian boundary 
and does not contain any known reversals within 
it that are younger than the Albian (ca. 100 Ma), 
the reversal in our section of the Bajo Barreal 
must be Campanian or younger in age, suggest-
ing that the upper Bajo Barreal Formation in this 
area is younger than generally thought. This is 
supported by nearby dinosaur fossils from the 
upper Bajo Barreal that suggest a Campanian–
?Maastrichtian age (Casal et al., 2007; Ibiricu 
et al., 2010). Given these various age con-
straints, we correlate the polarity reversal in 
the upper Bajo Barreal Formation to the C33r-
C33n reversal but acknowledge that it could be a 
younger, Campanian or Maastrichtian reversal.

The early Danian foraminifera, calcareous 
nannofossils, and dinofl agellates reported here 
from the base of the Salamanca Formation 
indicate that the normal polarity interval in the 
lower part of the Salamanca Formation is Chron 
C29n (65.69–64.96 Ma). The U-Pb age of 61.98 
Ma from the overlying Peñas Coloradas For-
mation indicates that its reversed polarity zone 
(which contains the dated tuffs) is most likely 
Chron C26r (62.22–59.24 Ma; Fig. 9) with the 
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normal polarity interval at the base of the Peñas 
Coloradas Formation in all likelihood correlat-
ing to C27n (62.52–62.22 Ma) given the general 
stratigraphic continuity within this formation.

The intervening strata of the upper Salamanca 
Formation and BNI are all normal polarity and 
lack additional chronologic constraints, mean-
ing that they belong to some combination of 
C29n, C28n, and/or C27n and that at least one, 
and probably more, signifi cant unconformities 

must be present that erased two corresponding 
reversed polarity intervals (C28r and C27r). 
The most likely positions for large unconformi-
ties are within the upper Salamanca Formation 
(between the Fragmentosa and the Banco Verde 
beds) and between the BNI and the overlying 
Peñas Coloradas Formation. These two erosional 
surfaces have been clearly identifi ed in coastal 
successions (Legarreta et al., 1990; Legarreta 
and Uliana, 1994; Bond et al., 1995), and our 

own observations suggest they are developed in 
the study area as well (Comer, 2011).

The stratigraphic position of unconformities 
and intervening sedimentary systems tracts can 
be combined with the updated chronologic data 
and a global eustatic sea level curve to develop 
a sequence stratigraphic interpretation for the 
Salamanca Formation that provides an internally 
consistent chronostratigraphy of early Paleo-
cene deposition in the study area (Comer, 2011; 
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Fig. 10). It is assumed in this analysis that the San 
Jorge Basin was slowly but continuously subsid-
ing during this time. The unconformity between 
the Bajo Barreal and the Salamanca Forma-
tion was likely associated with non-deposition 
and erosion during the Late Cretaceous when 
eustatic sea level was moderately low (Kominz 
et al., 2008; see sequence boundary SB-1 in Fig. 
10). Salamanca deposition began during Chron 
C29n in the study area, during the early Danian 
marine transgression, but likely initiated earlier 
in the east, as would be expected for a trans-
gressive systems tract (Fig. 10). The sequence 
boundary between the Fragmentosa and Banco 
Verde facies (SB-2 in Fig. 10) likely formed 
during a mid-Danian fall of eustatic sea level 

(Kominz et al., 2008) that resulted in a eustatic 
lowstand in Chron 28n. The combination of 
constant eustatic sea level at lowstand and basin 
subsidence created net accommodation space 
that allowed a lowstand systems tract of the 
Banco Verde to form. The subsequent eustatic 
sea level rise and highstand created the overly-
ing transgressive (uppermost Banco Verde) and 
highstand (BNI beds) systems tracts of the upper 
Salamanca Formation. The BNI represents a 
prograding coastal swamp deposit that has tra-
ditionally been associated with shoreline regres-
sion (Legarreta and Uliana, 1994; Bellosi et al., 
2000; Bond et al., 1995; Matheos et al., 2001, 
2005; Raigemborn et al., 2010; Comer, 2011). 
This is consistent with a highstand systems 

tract interpretation in which sediment accom-
modation space is created slowly and the coastal 
deposits prograde. We see no evidence that this 
is a falling stage systems tract created by a forced 
regression. A third eustatic sea level fall created 
a third sequence boundary (SB-3) that separates 
the Banco Negro Inferior from the superjacent 
Peñas Coloradas Formation. The onset of Peñas 
Coloradas deposition in Chron C27n represents 
the end of marine deposition in the San Jorge 
Basin until at least the Oligocene (Legarreta and 
Uliana, 1994). The sequence stratigraphic inter-
pretation shown here represents the best match 
to the updated chronological data and to existing 
understanding of Late Cretaceous–Paleocene 
eustatic sea level changes, but other interpreta-
tions are also possible. To fully test these alterna-
tives, a more precise age estimate for the upper 
Salamanca Formation and BNI will need to be 
determined via further geochronological, paleo-
magnetic, and biostratigraphic analyses in other 
areas of the basin (especially along the coast).

Paleobiological Implications

Iglesias et al. (2007) estimated the age of the 
fossil fl oras from Palacio de los Loros to be ca. 
61.7 Ma, primarily based on the occurrences 
of Danian Zone P1C foraminifera in coastal 
sections of the Salamanca Formation (Bertels, 
1975). Zone P1C spans part of C28n and all of 
C27r, ending near the Danian-Selandian bound-
ary (ca. 61.7 Ma in the 2004 geologic time scale 
[GTS] used at the time), which, in the absence of 
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other constraints, Iglesias et al. took as a conser-
vative age estimate for the fl oras. Our new age 
constraints, and especially the normal polarity 
results for their stratigraphic interval, indicate 
that the fossil plant compression assemblages 
from Palacio de los Loros are probably entirely 
from Chron C28n (64.67–63.49 Ma in the 2012 

GTS; Gradstein et al., 2012), which means these 
comparatively high-diversity fl oras are ~2–3 
million years older than previously thought 
and indicate an even faster post–K-Pg recov-
ery. In addition, our results indicate a likely age 
within C28n for the compression fl ora from 
an isolated outcrop at Rancho Grande (Fig. 1; 

Iglesias, 2007), correlative with the fl oras at 
Palacio de los Loros and Ormaechea, and an 
age within C27n (late Danian) for the fossil 
fl ora in the lower Peñas Coloradas Formation in 
the Las Flores section (Fig. 1; Iglesias, 2007). 
Despite being ~1.5 m.y. younger and coming 
from a very different, fl uvio-volcanic deposi-
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tional environment, the Las Flores fl ora has very 
similar composition to those from Palacio de los 
Loros and Ormaechea (Iglesias, 2007), show-
ing continuity through time of this coastal forest 
fl oral  association.

The relatively high plant diversity during the 
early Paleocene observed here is consistent with 
recent palynological results from the Lefi pán 
Formation (~350 km north of the study area), 
where a short-term microfl oral turnover and 
decline in species richness at the K-Pg boundary 
was rapidly followed by a rebound in diversity 

during the Danian to levels similar to the Maas-
trichtian (Barreda et al., 2012). The Salamanca 
macrofl oral diversity pattern that is implied by 
the new age constraints reported here adds to 
the growing evidence for lower extinction at, 
and more rapid Southern Hemisphere biotic 
diversifi cation after, the K-Pg extinction com-
pared to the Northern Hemisphere (Case and 
Woodburne, 1986; Wolfe, 1987; Askin, 1988; 
Vajda and McLoughlin, 2007; Jiang et al., 2010; 
Wilf et al., 2013). Whether this trend is associ-
ated with greater distances from the Chicxu-

lub impact site, differences in biogeographic 
dynamics such that Southern Hemisphere 
continents acted as refugia, or something else, 
remains unknown.

Our new chronostratigraphic interpretation 
for the Salamanca Formation also provides 
important temporal constraints on the Banco 
Negro Inferior and its fossil assemblages. Mar-
shall et al. (1981) analyzed the paleomagnetism 
of the BNI along the coast (Punta Peligro and 
Cerro Redondo) and found it to be characterized 
by reversed polarity. The BNI is shown here to 
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be normal polarity in the Sarmiento area, which 
means that it is defi nitely a time-transgressive 
unit (see also Somoza et al., 1995). Our new 
chronologic constraints and sequence strati-
graphic interpretation suggest that the BNI is 
progradational from west to east and correlates 
to the top of Chron C28n near Sarmiento and 
to the base of Chron C27r (63.49 Ma) along 
the coast (Fig. 10). This interpretation makes 
the BNI, and associated Peligran SALMA, sig-
nifi cantly older than the early Selandian (ca. 
62–60 Ma) age that it was previously assigned 
(Marshall et al., 1981; Somoza et al., 1995; 
Bonaparte et al., 1993; Gelfo et al., 2009). The 
Peligran SALMA is then correlative with the 
early Torrejonian North American Land Mam-
mal Age (NALMA) and Shanghuan Asian Land 
Mammal Age (ALMA; Clyde et al., 2010). 
These results also imply that the Peligran 
SALMA is closer in age to (or possibly older 
than) the Tiupampan SALMA. The Tiupampan 
SALMA has most recently been referred to as 
earliest Paleocene and correlated with the Puer-
can NALMA, but is based entirely on a mammal 
fauna from the poorly dated Santa Lucía Forma-
tion in Bolivia that has been variously attributed 
to the Upper Cretaceous through Selandian (see 
discussion in Gelfo et al., 2009).

Our results from the western San Jorge Basin 
also have implications for the age of important 
fossiliferous units of the Río Chico Group and 
their associated SALMAs. Based mostly on fos-
sil localities near the coast, Simpson (1935b) 
fi rst divided Río Chico stratigraphy into three 
mammalian faunal zones (Carodnia, Kibeni-
khoria, and Ernestokokenia), which correlate 
with the three lithological units exposed there 
(Peñas Coloradas, Las Flores, and Koluel-Kaike 
Formations, respectively, as near Sarmiento). 
The Kibenikhoria zone of the Las Flores For-
mation is often referred to the Itaboraian 
SALMA, and the Ernestokokenia zone of the 
Koluel-Kaike Formation forms the basis of the 
Riochican SALMA (Bond et al., 1995). The 
“Carodnia” zone is based on very few taxa 
found in Peñas Coloradas exposures near the 
coast (e.g., Carodnia feruglioi and Notoetayoa 
gargantuai) and thus has not been elevated to 
Land Mammal Age status, but it is still thought 
to represent a distinct period of South American 
faunal evolution. The possible correlation of the 
“Carodnia” zone assemblage (as well as the 
Kibenikhoria zone as mentioned) to the poorly 
dated fi ssure-fi ll assemblages at Itaboraí in Bra-
zil is often discussed (Simpson, 1935a, 1935b; 
de Paula Couto, 1952; Bond et al., 1995; Mar-
shall et al., 1997; Gelfo et al., 2009). Our new 
U-Pb isotopic date of 61.98 Ma from the upper 
Peñas Colo radas Formation near Sarmiento, as 
well as its dominantly reversed magnetic polar-

ity (as it is near the coast; Marshall et al., 1981), 
indicates that it falls mostly within C26r (62.22–
59.24 Ma) and is thus latest Danian in age. This 
makes the “Carodnia” zone (at ca. 62 Ma) sig-
nifi cantly older than generally thought (e.g., 
Thanetian, ca. 58–56 Ma; Gelfo et al., 2009) 
and equivalent to, or at least overlapping with, 
the early Tiffanian NALMA and Nongshanian 
ALMA (Clyde et al., 2010). Given the possi-
bility for diachroneity within Río Chico facies, 
direct testing of this correlation will require geo-
chronological results from the coastal sections 
of the Peñas Coloradas Formation that actually 
produced the “Carodnia” zone fossils.

The original Kibenikhoria zone fossils 
described by Simpson (1935a, 1935b) were 
recovered from Río Chico facies at Cañadon 
Hondo, which lies about halfway between 
Sarmiento and the modern coast. Legar-
reta and Uliana (1994) and Bond et al. (1995), 
who recognized distinct, sequence-bounded 
litho-biostratigraphic packages within the early 
Paleogene stratigraphy of the San Jorge Basin, 
associated this fauna with the Las Flores For-
mation. Additional vertebrate specimens from 
the Las Flores Formation are now known from 
east of Sarmiento city at the eastern tip of Gran 
Barranca (Cione et al., 2011) and along the coast 
near Comodoro Rivadavia (Krause and Piña, 
2012). Our results indicate that the bottom part 
of the Las Flores Formation south of Sarmiento 
is characterized by normal polarity, which must 
represent Chron C26n or younger based on the 
new geochronological results for the underly-
ing Peñas Coloradas Formation presented here. 
Currently, the only reliable age constraint from 
above the Las Flores Formation comes from 
the Sarmiento Formation, which lies above the 
 Koluel-Kaike Formation and is correlated to 
Chron C19r at its base (42.30–41.39 Ma; Ré 
et al., 2010; Dunn et al., 2012). This means 
that the Las Flores Kibenikhoria fauna (likely 
equivalent to, or overlapping with, the Itaboraian 
SALMA) and the Riochican SALMA could 
theoretically be anywhere from late Paleocene to 
middle Eocene in age. Additional geochronolog-
ical studies of the Las Flores and Koluel-Kaike 
Formations are clearly needed to better resolve 
the age of these units and their associated faunas. 
This is particularly important given the likeli-
hood of large unconformities within this interval 
and the importance of determining the position 
of the Paleocene-Eocene boundary in the San 
Jorge Basin stratigraphy.

CONCLUSIONS

New biostratigraphic, radioisotopic, and 
paleomagnetic data from the fossiliferous Bajo 
Barreal Formation, Salamanca Formation, and 

overlying Río Chico Group in the Sarmiento 
area of Chubut, Argentina (central Patagonia), 
are placed in a sequence stratigraphic frame-
work to develop a revised chronostratigraphy 
for the Late Cretaceous–early Paleogene depos-
its of the San Jorge Basin. Implications of this 
new chronostratigraphy are that (1) the Bajo 
Barreal Formation in this area ranges up to at 
least the Campanian (i.e., <83.6 Ma), (2) the 
Salamanca Formation (including the BNI) 
in the study area ranges from early to middle 
Danian (early Paleocene; ca. 65.7–63.5 Ma), 
and (3) the Peñas Coloradas Formation is latest 
Danian in age (ca. 62.5–61.6 Ma). Previously 
reported diverse fossil plant assemblages from 
the same sections studied here are from Chron 
C28n (64.67–63.49 Ma) and thus ~2 million 
years older than previously thought, supporting 
recent results suggesting a more rapid South-
ern Hemisphere biotic recovery from the K-Pg 
extinction compared to the Northern Hemi-
sphere. Important fossil vertebrate faunas from 
the Banco Negro Inferior (Peligran SALMA) 
and Peñas Coloradas Formation (“Carodnia” 
zone) from areas farther to the east are also 
interpreted to be considerably older than gen-
erally acknowledged, correlating to the early 
Torre jonian NALMA/Shanghuan ALMA and 
the early Tiffanian NALMA/Nongshanian 
ALMA respectively.
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