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[1] Delta distributary networks are created by bifurcating channels that commonly split
their discharges unequally. The origin and stability of these asymmetrical fine-grained
cohesive bifurcations are investigated here using Delft3D, a morphodynamic flow and
sediment transport model. Results are compared to bifurcations on the Mossy delta,
Saskatchewan, Canada, that have remained stable for decades. Over a range of channel
aspect ratios, friction factors, and Shields numbers, we find three equilibrium functions
relating the discharge ratio of the bifurcate arms at equilibrium to the Shields number.
One function defines symmetrical configurations (equal partitioning of discharge), while the
other two define asymmetrical configurations (unequal partitioning of discharge). Discharge
asymmetries and morphologies of Mossy delta bifurcations are consistent with these
predictions. Among the equilibrium bifurcations, only the asymmetrical type is stable to
perturbations, such as a partial closing of one throat. This possibly explains why
asymmetrical bifurcations are more common in nature.
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1. Introduction

[2] A survey of the world’s river-dominated delta net-
works reveals that distributary channels rarely split their
water discharges equally as they bifurcate into multiple
channels. Rather, the discharges, and consequently the
channel widths, depths, and sediment loads, are usually
asymmetrical, seemingly representing a stable configuration
(Figure 1). This regularity seems surprising given the
complexity of distributary channel mechanics and suggests
that morphodynamic feedbacks are at work acting to stabi-
lize the delta channel network. Because it is the bifurcations
that create the network, we focus on them here and ask these
questions: (1) can asymmetrical bifurcations be in equilib-
rium such that the hydraulic properties of each bifurcate
channel are adjusted to just transport the water and sediment
given to it? (2) If so, are they stable, equilibrium config-
urations that return to their equilibrium configuration when
perturbed? (3) Will perturbations such as climate change
[e.g., Ericson et al., 2006; Lesack and Marsh, 2007] and
upstream impoundment of sediment by dams [Syvitski et
al., 2005], lead to increasing instabilities and degradation
of these channel network and their bifurcations?
[3] These questions are important because the distribu-

tary networks that bifurcations create provide valuable
maritime infrastructure and fertile floodplains to humans,
and a nutrient-rich habitat for a diverse and biologically
valuable ecosystem [Olson and Dinerstein, 1998]. Here we
attempt to answer the first two questions using a numerical
model and field data to elucidate how asymmetrical deltaic
bifurcations function and under what conditions they are

stable. Bifurcations are stabilized by processes operating
locally, such as division of sediment at the bifurcation point,
and processes operating globally, such as delta-scale
changes in water surface slope. We restrict our analysis of
distributary network stability to those processes acting
locally on the bifurcations.

2. Present Understanding of Fluvial-Channel
Bifurcations

2.1. General Characteristics of Bifurcations

[4] Among the occurrences of channel bifurcations we
make the distinction between coarse-grained systems and
fine-grained noncohesive and cohesive systems. The former
seem to adjust their hydraulic geometry to maintain a
Shields stress (Q) at about 1.4 times the critical Shields
stress [Parker, 1978], whereas the latter maintain a Q of
about 1 for mixed load channels and about 10 for suspended
load channels [Dade and Friend, 1998]. Q is defined as

Q ¼ to
rs � rð ÞgD50

ð1Þ

where to is the fluid shear stress (N/m2), rs is the sediment
density (kg/m3), r is the water density (kg/m3), g is
acceleration due to gravity (m/s2), and D50 is the median
bed grain size (m).
[5] Even though coarse-grained (hereafter termed low Q)

and fine-grained (hereafter termed high Q) bifurcations are
thought to arise from different processes, ranging from flow
splitting around bars to avulsion, they exhibit intriguingly
organized and similar behaviors. On average, fluvial channel
bifurcations are asymmetrical. Edmonds and Slingerland
[2007] measured widths of the bifurcate channels on the
world’s distributary deltas and found that the width ratios
cluster around 1.7:1 (n = 160). A similar comprehensive
study is missing for braided streams, but limited observa-
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tions suggest that bifurcate width ratios for braided streams
cluster around 1.5:1 (n = 8) [Zolezzi et al., 2006]. For both
cases, limited data indicate that channel widths are hydrau-
lically adjusted to the discharge, and therefore the depths and
discharges probably also are asymmetrical. The equilibrium
configuration of asymmetrical bifurcations and their degree
of stability are open and interesting questions that we will
address in this study.

2.2. Low Q Bifurcations

[6] By far the most studied bifurcation type has been
within low Q channels, whether by field observation
[Davoren and Mosley, 1986; Ashmore et al., 1992; Ashworth
et al., 1992; Bridge, 1993; Ashworth, 1996; Richardson and
Thorne, 2001; Zolezzi et al., 2006; Frings and Kleinhans,
2008], flume studies [Federici and Paola, 2003; Zanichelli et
al., 2004; Bertoldi and Tubino, 2005; Islam et al., 2006;
Bertoldi and Tubino, 2007], or by numerical modeling
[Repetto et al., 2002; Bolla Pittaluga et al., 2003; Dargahi,
2004; Zanichelli et al., 2004; Hall, 2005;Wu and Yeh, 2005;
Kleinhans et al., 2008; Miori et al., 2006].
[7] Present understanding of low Q bifurcation stability is

summarized in Miori et al. [2006] and Bertoldi and Tubino
[2007] who built on the pioneering approach of Bolla
Pittaluga et al. [2003]. Bolla Pittaluga et al. [2003]
approached the problem with a one-dimensional numerical
model of steady, uniform flow through a bifurcation. They
discovered that the bed ramp, defined as the topographic
rise in elevation from the unbifurcated reach to the shal-
lower of the two downstream channels, steered different
amounts of bed load to each downstream channel enabling
an asymmetrical stable, equilibrium solution. Their model
predicts that as Q increases in the unbifurcated reach, the

stable, equilibrium bifurcate discharge ratio (larger channel/
smaller channel) should decrease. Miori et al. [2006]
improved on the Bolla Pittaluga model by allowing channel
width to vary according to hydraulic geometry rules. They
also produced asymmetrical stable, equilibrium bifurca-
tions, and found that the final stable function depends on
whether a bifurcation forms through incision of a new
channel, or flow splitting around a midchannel bar. Other
work has shown that stable solutions can be a function of an
upstream meander bend [Kleinhans et al., 2008] or the
bifurcation angle magnitude [Mosselman et al., 1995].

2.3. High Q Bifurcations

[8] There has been much less research on high Q bifur-
cations. Only a few field studies exist [Axelsson, 1967;
Andren, 1994; Sloff et al., 2003; Edmonds and Slingerland,
2007], experimental studies are hampered by scaling con-
siderations [Zanichelli et al., 2004], and theoretical studies
are limited to Wang et al. [1995] and Slingerland and Smith
[1998].
[9] Development of an adequate stability theory for high

Q bifurcations also lags behind the low Q case. It may be
that the theory for low Q bifurcations also applies to high Q
bifurcations; however, this idea is untested and hinges on
what roles the suspended load and sediment cohesiveness
play. Wang et al. [1995] considered a bifurcation where the
two bifurcate channels flow into a lake. These authors
introduce an empirical nodal point boundary condition that
controls the partitioning of water and sediment into the
downstream branches. Their one-dimensional, steady, uni-
form flow analysis shows that the system contains only one
stable state: a symmetrical division of discharge with both
branches open. Slingerland and Smith [1998] improved on

Figure 1. Two examples of distributary deltas with bifurcating channel networks. On average the fluvial
channel bifurcations (wherein one channel splits into two) are asymmetrical; their bifurcate discharges are
unequal. This is true for the bifurcations on the coastline and the more mature bifurcations farther up the
delta. (A) Composite aerial photograph of Mossy Delta, Saskatchewan, Canada from 2003. Individual
photos are from Information Service Corporation of Saskatchewan [2003]. The white line on the east side
of the delta is the shoreline. The numbers mark the locations of the eight bifurcations in this study. (B)
Image of Wax Lake Outlet delta, LA from 1998 USGS aerial photography. Inset maps shows delta
locations marked by a circle.
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Wang et al.’s model by using the one-dimensional St. Venant
equations coupled with suspended sediment and Exner’s
equation for the case of river avulsions. They showed that
symmetrical configurations are unstable to small perturba-
tions. However, their analyses focused on conditions for
avulsion and not exactly on bifurcation stability.
[10] In summary, our understanding of high Q bifurca-

tions is severely limited. The current theoretical treatments
are oversimplified and do not consider nonuniform flows
that are known to be important in some bifurcations
[Dargahi, 2004]. Current numerical treatments also rely
on an artificial internal boundary condition, or nodal point
relation, to distribute sediment at the bifurcation. A more
sophisticated modeling approach that accounts for the effect
of unsteady, nonuniform flow, and allows the system to
develop its own nodal point relation is needed. Perhaps
most importantly, field data are needed to validate the
stability studies of high and low Q bifurcations.
[11] Given that high Q bifurcations are the dominant type

on navigable rivers, there is a pressing need for detailed
field data and improved theoretical modeling. To this end,
our approach is to use numerical modeling to define the
equilibrium solutions for high Q bifurcations and then
perturb those configurations to see if they are stable. We
then use field data to validate the predictions. Important
objectives are: (1) to define the stability functions for
high Q bifurcations and compare them to low Q bifurca-
tions; (2) to define the hydraulic and sedimentary processes
that create stable, asymmetrical, high Q channel bifurca-
tions; and (3) to understand why bifurcating channels are
generally asymmetrical with respect to their discharges,
widths, and depths.

3. Numerical Model Description

3.1. Model Description

[12] We model the processes within a fluvial-channel
bifurcation using the computational fluid dynamics package
Delft3D. Delft3D simulates fluid flow, waves, sediment
transport, and morphological changes at timescales from
seconds to years and has been validated for a wide range of
hydrodynamic, sediment transport, and scour and deposition
applications in rivers, estuaries, and tidal basins [Hibma et
al., 2004; Lesser et al., 2004; Marciano et al., 2005; Van
Maren, 2005]. The equations of fluid and sediment transport
and deposition are discretized on a curvilinear finite differ-
ence grid and solved by an alternating direction implicit
scheme. An advantage of Delft3D is that the hydrodynamic
and morphodynamic modules are fully coupled; the flow
field adjusts in real time as the bed topography changes.

3.2. Governing Equations

[13] Delft3D solves the three-dimensional nonuniform,
unsteady, incompressible fluid flow Reynolds equations
under the shallow water and Boussinesq assumptions. The
equations consist of conservation of momentum, conserva-
tion of mass, and the transport equation. The vertical eddy
viscosities are defined using a k–e turbulence closure
scheme and the horizontal eddy viscosities are defined
using a horizontal large eddy simulation that relates the
horizontal fluid shear stress to the horizontal flow velocities.
We did numerical experiments with and without the hori-
zontal large eddy simulation and found it did not have an

appreciable effect on the final solutions. Therefore to reduce
computational time, the horizontal large eddy simulation
was not used and the horizontal fluid eddy diffusivities in all
experiments are set to a constant value of 0.0001 m2/s in the
x and y directions. All results presented here use the
vertically integrated two-dimensional equation set in
Delft3D because the equilibrium solutions vary little from
the three-dimensional solutions (5 equally sized computa-
tional layers in the vertical) by only a maximum of 15% of
the equilibrium discharge ratio.
[14] Delft3D has separate mathematical treatments for the

erosion and deposition of cohesive and noncohesive sedi-
ment. Cohesive sediment is defined as silt-sized and finer,
whereas noncohesive sediment is defined as sand-sized and
coarser. The formulation for cohesive sediment erosion and
deposition is based on work by Partheniades [1965] and
Krone [1962], whereas the formulation for noncohesive
sediment erosion and deposition is based on the Shields
curve.
[15] Cohesive and noncohesive sediment can be trans-

ported as bed load or suspended load depending on the
grain size and the flow strength. Bed load transport rate per
unit width is calculated from van Rijn [1984]. The magni-
tude and direction of the bed load transport vector is
adjusted for favorable and adverse longitudinal slopes
according to Bagnold [1966] and for transverse slopes
according to Ikeda [1982]. Suspended load transport rate
is calculated by solving the vertically integrated three-
dimensional diffusion–advection equation, where the sedi-
ment eddy diffusivities are a function of the fluid eddy
diffusivities. Gradients in the sediment transport vectors are
used to determine changes in bed topography using the
Exner equation. For a more detailed discussion on the
mathematics of Delft3D and the flow/topography interac-
tions, see Lesser et al. [2004].

4. Numerical Modeling Approach

4.1. Model Grid Considerations

[16] For our experiments, we designed a computational
grid with a straight unbifurcated (upstream) reach and two
bifurcate reaches (Figure 2A). The unbifurcated reach is
defined as channel a, the bifurcate channel with the smaller
discharge is channel b, and the bifurcate channel with the
larger discharge is channel c. The grid is perfectly symmet-
rical about the centerline of the unbifurcated reach with a
bifurcation angle between the two bifurcate channels of 55�.
The channels have fixed walls and the top width of each
bifurcate is approximately one-half the width of the unbi-
furcated channel.
[17] Each bifurcate channel has a nondimensional length

(L0) of approximately 12.5 which is consistent with the
average L0 of approximately 14 reported by Edmonds et al.
[2004] from a survey of 24 distributary deltas throughout
the world. L0 is defined as L0 = L/W, where L is the
dimensional channel length and W is the dimensional
channel width. We did additional experiments with numer-
ical grids that have longer bifurcate channels (L0 = 37.5) to
see if L0 influenced our results. Equilibrium solutions for the
longer bifurcate channels fall within 6 to 10% of the
equilibrium solution for shorter bifurcate channels, leading
us to conclude that the results presented here are insensitive
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to the range of L0 measured by Edmonds et al. [2004]. In all
cases our channel lengths are shorter than the backwater
length scale (�15 km for these experiments) as would be
expected for distributary channels near the coastline.
[18] Numerical results should also be independent of grid

cell size [Hardy et al., 2003]. We tested for grid indepen-
dence and found that the results of this study were relatively
insensitive to grid size. Therefore we chose a grid that is
numerically efficient yet still resolves topographic details in
the evolving system. Each grid cell is a rectangle that is
approximately 2-m wide and 15-m long with the long axis
of the rectangle parallel to the flow direction. The time step
in our experiments obeys the Courant–Frederichs–Levy
criterion, and therefore the smallest cell determines the size
of the maximum time step.
[19] Grids in Delft3D should be smooth and each cell

should be orthogonal in order to conserve mass and mo-
mentum. To achieve orthogonality around the bifurcation
point (Figure 2B), extra grid cells were added and an
orthogonal transformation was applied using the Delft3D
gridding software. The computational grid used in these
experiments has a maximum deviation from orthogonality
of 20�. This orthogonality does not affect the solution;
experiments with higher orthogonality achieved results
similar to results with lower orthogonality.

4.2. Model Setup and Boundary and Initial Conditions

[20] The variables thought to govern the behavior of
bifurcations can be grouped into three dimensionless param-
eters: Shields number of the unbifurcated reach, Qa, aspect
ratio of the unbifurcated reach, aa, and friction factor of the
system, C0, where

a ¼ W

D
ð2Þ

W is the width (m) and D is the depth (m) and

C0 ¼ C
ffiffiffi

g
p ð3Þ

C is the dimensional Chezy roughness (m1/2/s), and g is the
acceleration due to gravity (m/s2).
[21] The numerical modeling experiments use a range of

these parameters to accurately represent fine-grained, cohe-
sive fluvial bifurcations. The experiments are two-dimen-
sional vertically integrated with one inlet and two outlets.
The inlet boundary condition of channel a is a steady,
uniform discharge across the channel carrying an equilibri-
um sediment concentration. The outlet boundary conditions
are steady, uniform free water surface elevations for channel
b (hb) and for channel c (hc). The bed elevations at the
downstream boundaries are allowed to adjust during the
simulations.
[22] At the inlet we prescribe equilibrium sediment con-

centrations that consist of a cohesive fraction of mud and a
noncohesive fraction of fine-grained sand. Initially in the
erodable substrate there is an equal proportion of evenly
mixed noncohesive and cohesive sediment. We used a
temporally and spatially invariant nondimensional Chezy
roughness (C0) value of 12.5 and the aspect ratio (a) of
channel a of approximately 16 for all runs. Qa varied from
approximately 0.047 to 30.
[23] The initial river bed topography for each numerical

experiment consists of a uniform bed elevation in each
channel where the initial bed elevation in channel b is
always higher than a and c. If there is a vertical offset
between channel a and b (that is, if there is a vertical
step at the entrance to channel b) the model will not find
an equilibrium solution because the local water surface
slope induced by the offset causes channel c to capture
all the flow. However, if there is no vertical offset and
the entrance is sufficiently smooth the model is not
sensitive to initial conditions. To generate a smooth
entrance we construct a bed ramp by linearly interpolat-
ing the bed elevation from channel b approximately one
or two multiples of Wa upstream [Bolla Pittaluga et al.,
2003]. This initial condition permits a variety of different
bed ramp configurations that will evolve to a single
equilibrium solution (Figure 3). The experiments in this
study used the bed ramp configuration in Figure 3 that
extends approximately 2 channel widths upstream from
the bifurcation point.

4.3. Obtaining an Equilibrium Bifurcation
Configuration

[24] What is the appropriate metric for determining if a
deltaic bifurcation is at equilibrium? Equilibrium deltaic
systems are net depositional because the downstream
boundary is changing due to delta progradation or changing
sea level. However, as a first approximation we argue that
we can assume that equilibrium deltaic bifurcations are
adjusted for sediment bypass because the timescale for
channel adjustment is very small compared to delta pro-
gradation. Therefore we follow the definition of Miori et al.
[2006]; bifurcations are in equilibrium if they do not change

Figure 2. (A) Planform outline of numerical grid used in
this study. (B) Close-up of the numerical grid showing
individual cells. Each grid cell is approximately 2-m wide
and 15-m long.
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in morphology over some multiple of the morphological
timescale (Tm), where

Tm ¼ WaDa

qsa
ð4Þ

Wa is width (m) in channel a, Da is the depth (m) in channel
a, and qsa is the sediment transport rate per unit width (m2/s)
in channel a. Tm is the duration over which the amount of
sediment needed to fill a cross-section is transported
through that cross-section. We consider a bifurcation to be
in equilibrium if there is suspended and bed load transport
in all reaches and the change in discharge ratio, Qr, with
time varies by no more than 1% around the equilibrium
value for at least 15 multiples of nondimensional time
(TND), where

Qr ¼
Qc

Qb

; and ð5Þ

TND ¼ T

Tm
ð6Þ

Qc and Qb are the water discharges (m3/s) in the channels
with the larger and smaller water discharges, respectively, T
is the total time elapsed and TND is the nondimensional
time, or the multiples of the morphological timescale
elapsed during the computation.
[25] To find equilibrium configurations in Delft3D we

start with generic bed bathymetry with Dr 6¼ 1, where Dr is

the initial average depth ratio of the bifurcate channels, and
a generic bed ramp between the channel b and channel a.
We then adjust the Shields stress in channel a (Qa) until we
find the value that produces an equilibrium bifurcation
configuration from that set of boundary conditions and
initial Dr (Figure 4) if one exists. We use this method to
find the equilibrium solution because the nonlinear nature
of the equations demands that the initial and boundary
conditions be close to the solution for the model to recover
that solution. As such, if the initial Qa in Figure 4 is much
larger than the equilibrium value, Qr goes to 1, and if the
initial Qa is much smaller than the equilibrium value, Qr

goes to infinity, that is, one channel closes completely. The
bold line in Figure 4 represents a single equilibrium
bifurcation solution. To build an entire equilibrium dia-
gram we chose a number of different initial Dr values and
found the corresponding Qa that resulted in an equilibrium
bifurcation.
[26] Delft3D allows the user to speed up the bed adjust-

ments by multiplying the deposition or erosion rate in each
time step by a morphological scale factor. A series of
sensitivity experiments showed that the final solution is
insensitive to a morphological scale factor less than 250. We
used a factor of 50. Approximately 100 simulations were
conducted to define an equilibrium field.

5. Results

[27] There are two classes of equilibrium bifurcations,
those which have equal water surface elevations at their
downstream boundaries, such as bifurcations on deltaic
coasts (Figure 1), and those which have an imposed advan-
tage due to different water surface slopes, such as more
mature bifurcations farther up delta. The differences between
the equilibrium states of each class are not well defined. To
this end, we conducted two sets of equilibrium experiments,
one with equal water surface elevations at the outlets of
channels b and c (hb = hc) and one with an imposed water
surface slope advantage from unequal water surface eleva-
tions at the outlets of channels b and c (hb 6¼ hc). Delft3D
finds symmetrical (Dr and Qr = 1) and asymmetrical (Dr and
Qr 6¼ 1) equilibrium functions for both experiment sets. We
first present a description of the typical equilibrium bifurca-
tion with a symmetrical and asymmetrical configuration
common to both experiments. Then we summarize the
results from all experiments in a bifurcation equilibrium
diagram and comment on the stability of the equilibrium
solutions.

5.1. Description of the General Bifurcation
Equilibrium Configuration

[28] The equilibrium bifurcations created in this study
share the same basic topographic and hydraulic forms and
features: (1) across the entrances to channels b and c there is
cross-channel variation of water surface elevation and bed
topography (Figure 5); (2) there is a positive bed ramp at the
entrance to channel b and a negative bed ramp at the
entrance to channel c (Figure 5); (3) the thalwegs for
channels b and c are located on their southern and northern
banks, respectively (Figure 5); and (4) in equilibrium
asymmetrical configurations, the water surface topography
is complex around the bifurcation point (Figure 6).

Figure 3. Two different initial bed ramp configurations
tested in this study. In each configuration the bed elevation
is contoured and is measured relative to the downstream
boundaries of the bifurcate channels which are both zero.
The results of this study are insensitive to the initial bed
ramp configuration; therefore the top configuration was
used. The location of the close-up is given in Figure 2A.
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[29] The cross-channel variations in water surface eleva-
tion and bed topography at the entrances to channels b and c
are the result of the interaction of the flow with an
obstruction (i.e., the point of the bifurcation and the bed
ramp). This can be understood by considering a streamline
through the middle of channel a that intersects the bifurca-
tion point of a symmetrical bifurcation (Dr and Qr = 1). If
energy along that streamline is conserved, the water surface
must rise because kinetic energy is converted to potential
energy at the bifurcation point where the velocity goes to
zero. In our experiments we observe a rise in water surface
of 0.5 to 1 cm (point a in Figure 5A), which is similar to the
1 to 2 cm rise predicted by the Bernoulli equation. Addi-
tionally, streamlines just north and south of the bifurcation
point respond similarly to the bifurcate channel curvature
and the water surface is also elevated (point a in Figure 5A).
The elevated water surface around the bifurcation point
creates a low velocity zone at the bifurcation point and in
turn sediment is deposited in the entrances to channels b and
c (point c in Figure 5A). If at the entrances to channels b and
c part of the water surface is elevated and the corresponding
velocity is low, to conserve mass through the entire cross
section, part of the water surface must also be depressed
(point b in Figure 5A) and the local velocity increased on
the outside bank. The higher velocity produces scour holes
(point d in Figure 5A) on the northern and southern banks at
the entrances to channels b and c, respectively.
[30] Now consider a streamline that intersects the bifur-

cation point in an asymmetrical bifurcation (Dr and Qr 6¼ 1;
Figure 5B). The same general water surface and topographic
forms described above are observed. However, the bed
ramp is more effective at increasing the water surface
elevation because in addition to conversion of kinetic to
potential energy due to the obstruction of the bed ramp, the
water surface is also elevated due to the increasing elevation
of the bed. The presence of the bed ramp makes the elevated
water surface asymmetrical in the entrances to channels b

and c (point a in Figure 5B). This also creates asymmetrical
bed topography (point d in Figure 5B) that is a skewed
version of the symmetrical case. At equilibrium the bed
ramps of both channels extend 0.9Wa to 2.25Wa upstream
from the bifurcation point at low and high equilibrium
values of Qr, respectively (e and f in Figures 5A, 5B).
[31] The bifurcate thalwegs are located on the northern

and southern banks of channels b and c respectively (g in
Figures 5A and 5B), because upstream of the bifurcation
fluid parcels in channel a have a momentum vector oriented
parallel to the banks of channel a. As those fluid parcels
enter channels b and c they are not immediately aligned
with the banks of channels b and c. The inherited momen-
tum orientation from channel a forces the high velocity
thread to the southern and northern banks of channels b and
c, respectively. In turn, this causes the thalweg downstream
of the bifurcation point to be located in the same position (g
in Figures 5A and 5B).
[32] In an equilibrium asymmetrical bifurcation the water

surface elevation profiles down the middle of channels b
and c are nonuniform; the water surface at the entrance to
channel b is elevated, while at channel c it is depressed
relative to a uniform water surface slope (Figure 6). The
nonuniformity of the water surface extends upstream 2.5Wa

to 5Wa at low and high equilibrium values of Qr, respec-
tively. The cause of the nonuniform water surface config-
uration around the bifurcation is related to flow past an
obstruction and the presence of a bed ramp in each channel.
[33] The morphodynamic feedbacks among the dynamic

water surface elevation, flow velocities, bed slopes, and
sediment transport vectors create an equilibrium bifurcation
in which Q and sediment discharge (Qs) of the bifurcate
channels are delicately adjusted to just transport the sedi-
ment and water delivered to them. In this example (Figure 5
and Figure 6) the ratios are Qr and Qsr 	 2.5.

5.2. Equilibrium Diagram

[34] Similar to the theoretical analysis of coarse-grained
bifurcations [Bolla Pittaluga et al., 2003; Miori et al.,
2006], our equilibrium diagram for fine-grained, cohesive
bifurcations is characterized by three equilibrium functions
in Qa space: (1) at all values of Qa above transport and with
hb = hc, there is an equilibrium function with Dr and Qr = 1
(Figure 7A); (2) at relatively low values of Qa and with hb =
hc, there is an equilibrium function with Dr and Qr 6¼ 1
(Figure 7B); and (3) at relatively high values of Qa and with
hb 6¼ hc, there is an equilibrium function with Dr and Qr 6¼ 1
(Figure 7C). The symmetrical equilibrium function occurs
through all values of Qa greater than the critical Shields
stress, Qcrit (Figure 7A). This is an unsurprising result and
has also been found with other numerical models [Wang et
al., 1995; Slingerland and Smith, 1998].
[35] More surprisingly, at Qa < 2.3 and hb = hc there are

asymmetrical equilibrium bifurcations, whose equilibrium
Qr is a positive function of Qa (Figure 7B). The function
stops at Qr > 6.5 because Qb becomes so small that Qb falls
below Qcrit for noncohesive sediment. Delft3D predicts that
Qr increases (becomes more asymmetrical) as Qa increases,
which is opposite to predictions for coarse-grained bifurca-
tions determined using numerical solutions of the steady,
uniform flow equations [Bolla Pittaluga et al., 2003; Miori
et al., 2006] and flume experiments [Bertoldi and Tubino,
2007].

Figure 4. Evolution of the discharge ratio for different
initial Qa. The initial conditions are generic bed and water
surface topography at TND equals 0. The bold line is an
invariant Qr over many TND and is considered to be an
equilibrium solution for that set of boundary conditions.
Variables defined in text and nomenclature list.
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Figure 5. (in color) Examples of symmetrical (A) and asymmetrical (B) water surface elevation and
bed topography at equilibrium as computed by Delft3D. The solutions have the following characteristics:
(1) at the entrances to channels b and c there are regions of the water surface that are elevated (a) and
depressed (b) and topographic features of positive (c) and negative (d) relief; (2) there is a positive bed
ramp (e) at the entrance to channel b and a negative bed ramp (f) at the entrance to channel c; and (3) the
channel thalwegs (g) of channels b and c are located along the southern and northern banks, respectively.
The bed topography is measured with respect to the downstream water surface elevation boundary, which
is zero in these cases. The white dotted lines in (B) refer to locations of water surface elevation profiles in
Figure 6. In this example Qa = 257.5, Qb = 75, and Qc = 182.5. For a more detailed explanation, see
section 5.1.
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[36] Why does Delft3D predict an increase in equilibrium
Qr with increasing Qa? We computed the static flow and
sediment transport fields at various values of Qr (or bed
ramp height) while holding Qa constant. The bed was not
allowed to deform. An increase in bed ramp height (h)
causes an increase in Qr and sediment discharge ratio, Qsr
(m3/s), because more discharge and sediment are diverted to
channel c than to channel b by the larger h. An increase in h
also increases the water surface slope in channel b
(Figure 8). A steeper water surface slope in channel b
requires more bed load to be delivered to the entrance of
channel b to remain in equilibrium, and this can only
happen if Qa is larger. The result is a counterintuitive,
inverse relationship between water and bed load discharge
(Figure 9) in the smaller discharge channel of equilibrium
bifurcations, because an increase in Qr simultaneously
causes an increase in water surface slope (and hence bed
load transport) and a decrease in discharge of that channel.
Therefore the trend of this equilibrium function is a conse-

quence of the elevated and depressed water surface (Figures 6
and 8) around the bifurcation point that allows for equilib-
rium asymmetrical energy slopes and sediment transport
rates in the bifurcate arms.
[37] At Qa > 2.1 with hb 6¼ hc, Delft3D predicts that

equilibrium Qr decreases as Qa increases for a given
combination of hb and hc (Figure 7C). For this particular
realization the initial depth in channels b and c are equal,
and hc was set 2.5 mm lower than hb, which makes the
water surface slope in channel c 10% steeper than channel
b. The lowest Qa for which this equilibrium solution exists
depends on the hc/hb ratio. As Qa increases, the equilibrium
Qr approaches 1 asymptotically. This occurs because the
slope advantage imposed by different hb and hc becomes an
increasingly small percentage of the water surface slope at
high Qa. Nonetheless, it is interesting that the asymmetrical
function with hb 6¼ hc does not exist for all values of Qa.
This function terminates at low Qa because the water
surface slope down the favored bifurcate arm is steep
compared to the water surface slope in channel a, and all
the sediment and discharge are routed down the favored
bifurcate channel. Thus for each realization of hb 6¼ hc, there
is a threshold point in Qa space below which the water
surface slope ratio between the unbifurcated reach and the
favored bifurcate reach is too large to maintain an equilib-
rium asymmetrical solution.

5.3. The Effect of Changing Channel Roughness (C0)
and Aspect Ratio of Upstream Channel (aa) on the
Equilibrium Functions

[38] It is important to remember that the results presented
so far are for a particular combination of aa and C0.
Additional numerical experiments show that at larger
(smaller) values of aa the relatively low Qa equilibrium
function (Figure 7B) shifts to a higher (lower) equilibrium
Qr for a given Qa. At larger (smaller) values of C0 the
relatively low Qa equilibrium function (Figure 7B) shifts to
a lower (higher) equilibrium Qr for a given Qa. At larger
(smaller) values of aa the relatively high Qa equilibrium
function (Figure 7C) shifts to a lower (higher) equilibrium

Figure 6. Equilibrium water surface profiles for an
asymmetric bifurcation. The profile of channel b is elevated,
while the profile of channel c is depressed relative to a
uniform slope (black dashed line). The elevation and
depression extend well upstream of the bifurcation (solid
triangle). The locations of the profiles correspond to the
while dotted lines in Figure 5.

Figure 7. Equilibrium diagram for fine-grained, cohesive deltaic bifurcations. The bold lines are
inferred continuous equilibrium solutions. (A) Equilibrium symmetrical solution with hb = hc occupies
all values of Qa > Qcrit. (B) Equilibrium asymmetrical solution (Qr 6¼ 1) with hb = hc terminates at Qa >
�7 because Qb < Qcrit. (C) Equilibrium asymmetrical solution with hb 6¼ hc approaches 1 as Qa

approaches �30. This particular solution has hc 2.5 mm lower than hb. All equilibrium solutions are
computed for aa = 16 and C0 = 12.5. Each equilibrium function also exists for the inverse of Qr.
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Qr for a given Qa. At larger (smaller) values of C0 the
relatively high Qa equilibrium function (Figure 7C) shifts to
a higher (lower) equilibrium Qr for a given Qa.

5.4. Are These Equilibrium Configurations Stable to
Perturbations?

[39] To test if the equilibrium configurations are stable we
added a perturbation to the equilibrium river bed topography
and let the model continue to compute forward. If the
perturbation was damped and the bifurcation returned to
the original equilibrium form then that configuration is
considered to be in a stable equilibrium. We follow previ-
ously published methodology [Bolla Pittaluga et al., 2003]
and add a small sediment bump (�50 cm high and 10500 cm3

or approximately a 5–10% net change in channel cross-
sectional area) in the middle of channel b.
[40] All three equilibrium functions (Figure 7) are stable

to small perturbations; when subjected to a perturbation in
the shallower bifurcate channel the system returns to the
equilibrium configuration (Figure 10). Additional numerical
experiments prove that all configurations in the three
equilibrium functions are stable to a small sediment bump
in the middle of channel b. However, if the size of that
sediment bump is sufficiently large (�100 cm high and
450,000 cm3 or a 30–40% net change in channel cross-
sectional area), the symmetrical configuration is no longer
stable. This is true for all symmetrical solutions over the
range of Qa in Figure 7. For example, if the symmetrical
equilibrium solution with Qr = 1 and Qa = 1 is perturbed
with a large sediment bump the new equilibrium solution
has Qr = 1.1. These results suggest that asymmetrical
bifurcations are more stable to perturbations compared to
symmetrical bifurcations.

6. Validation of Model Results Using Field Data

[41] To validate the theoretical predictions [in the sense of
Hardy et al., 2003] we collected river bed topography,
hydraulic data, and water surface elevations on eight natural
bifurcations in the Mossy delta, Saskatchewan, Canada
(Figure 1A). River bed elevations were collected using an
EAGLE FishElite 500c single-beam echo sounder. Channel
water discharges were measured with an acoustic Doppler

current profiler at near bankfull flow stage (Parsons and
Best, personal communication). Water surface elevation
data were collected by mounting a Leica differential global
positioning system (dGPS) rover (receiver) in a boat float-
ing down the middle of the channels recording water surface
elevations every second. The elevation data were processed
with Ski-Pro v. 3.0 using a base station of known elevation.
This technique is advantageous because the high temporal
resolution and vertical accuracy resolve the details of the
water surface. To validate this technique, we floated the
same river reach multiple times over different days and
observed the features of water surface topography in each
float.
[42] The value of Qa for each bifurcation was calculated

using measured bed grain sizes, water surface slopes, and
channel geometries. Time series of channel geometry for
most bifurcations indicate that their widths have adjusted in
accord with hydraulic geometry scaling [Edmonds, unpub-
lished data], suggesting that Mossy delta bifurcations are in
equilibrium with the flow field. Additionally, a serial aerial
photographic analysis shows most bifurcations have been
active for over 35 years [Oosterlaan and Meyers, 1995;
Edmonds and Slingerland, 2007], and have not changed
appreciably in planform. Thus we take the Mossy delta
bifurcations to be stable, equilibrium forms and if the
predictions of Delft3D are accurate these forms should
compare favorably with the theoretical numerical modeling
results.
[43] The river beds and water surfaces of Mossy delta

bifurcations are similar to the stable, equilibrium forms
predicted in this study (cf. Figures 2 and 11). The river
beds of the natural bifurcations have the same topographic
features as the stable, equilibrium bifurcations produced in
Delft3D (e.g., Figure 5). Additionally, the water surface
profiles of Mossy delta bifurcations show elevated and
depressed topographic configurations near the bifurcation
similar to model predictions (Figure 12). The water surface
is elevated at bifurcation points producing steeper water
surface slopes in two-thirds of the lower discharge bifurcate
channels (n = 8), indicating that the nonuniform water
surface is a common feature in natural bifurcations.

Figure 8. For a given Qa, an increase in bed ramp height
(h) increases the water surface at the entrance to channel b.
The water surface elevation is relative to hb and hc (which
are equal).

Figure 9. In equilibrium bifurcations computed in this
study there is an inverse relationship between bed load
transport (Qsbedload) in channel b and discharge (Qb) in
channel b. See text for details.
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[44] The eight Mossy delta bifurcations generally plot on
or near the equilibrium function in the stability diagram and
exhibit a trend similar to theory (Figure 13). We take the
favorable comparisons between predicted and observed
bed topographies (Figure 11), water surface topographies
(Figure 12), and locations on the theoretical stability
diagram (Figure 13) as support for the stability diagram.

7. Discussion

7.1. Comparison to Previously Published Models

[45] The asymmetrical bifurcation stability function pre-
sented here (Figure 7B) is different from previously pub-
lished results [Bolla Pittaluga et al., 2003; Miori et al.,
2006; Bertoldi and Tubino, 2007]. For braided river bifur-
cations the stable, equilibrium Qr decreases as Qa increases.
We think our stability solution has the opposite trend
because the fine-grained, cohesive system is sensitive to,
and controlled by, the strongly nonuniform water surface
topography at the bifurcation. Our results were computed

for a high Q system and it is unknown if the previously
published stability solutions at low Q will be as sensitive to
the nonuniform water surface topography at the bifurcation.
[46] Asymmetrical bifurcations are stable in braided riv-

ers because the bed ramp significantly alters the sediment
transport vector [Bolla Pittaluga et al., 2003], thereby
allowing each bifurcate channel to receive different amounts
of sediment due to the transverse sediment flux (QsT) at the
bifurcation point. QsT is defined as

QsT ¼ Qs� Qs*

where Qs (m3/s) is the sediment flux in a bifurcate channel
for a given solution and Qs* (m3/s) is the sediment flux in
that bifurcate channel for an symmetrical bifurcation with
the same hydraulic conditions. The difference is the
sediment that is being redirected due to the presence of
the bed ramp. Our results from Delft3D confirm that the
effect of transverse slopes on the sediment transport vector

Figure 10. Evolution of a perturbed equilibrium bed. (A) Bed topography at equilibrium is perturbed by
adding a mound of sediment in the middle of the channel (see section a-a0) in channel b. (B) Channel
cross-sections along a-a0 (top) and b-b0 (bottom) through time showing the equilibrium bed (dotted line)
and evolving bed (solid line). The perturbed bed returns to the equilibrium morphology after TND = 24.

Figure 11. (in color) River bed topography of natural bifurcations on the Mossy delta, Saskatchewan,
Canada. The locations of Mossy delta bifurcations are marked on Figure 1. These data were collected at
near bankfull flow stage in July 2006. The natural bifurcations have features similar to equilibrium
bifurcations produced in Delft3D. There are depositional and scour features around the bifurcation point,
there is a positive bed ramp from the main channel to the shallower channel, and the bifurcate thalwegs
are located on the inner banks.
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is a necessary condition for achieving asymmetrical
stability, but interestingly for fine-grained cohesive bifurca-
tions it is not a sufficient condition. If the transverse slope
effect on bed load transport is removed in our models, QsT
changes by only a few percent. Rather, the dominant
mechanism of sediment steering is topographic steering of
flow and sediment trajectories due to the presence of the bed
ramp and nonuniform water surface elevation at the

entrances of the two bifurcate channels. This topography
at the bifurcation cannot be known a priori, instead it is the
result of the morphodynamical feedbacks between a
coevolving river bed and flow field.

7.2. Why are Deltaic Bifurcations Asymmetrical?

[47] As noted earlier, on average, deltaic bifurcations
have asymmetrical widths, depths, and discharges in the
bifurcate channels. Our results show that asymmetrical
bifurcations are more stable to perturbations than symmet-
rical bifurcations. In addition, Bertoldi and Tubino [2007]
recently proposed a novel explanation for bifurcation asym-
metry that may also hold true for deltaic bifurcations. They
noted that under super-resonant conditions, the presence of
the bifurcation causes a transverse bed perturbation up-
stream that topographically steers more flow into one of
the bifurcate channels.
[48] The prevalence of asymmetrical bifurcations in na-

ture implies that there must be perturbations that drive the
bifurcation away from symmetry. The results from this
study (section 5.4) show that symmetrical bifurcations are
less stable; a large perturbation can force the symmetrical
bifurcation to become asymmetrical. There are a variety of
perturbations that could cause bifurcation asymmetry rang-
ing from process perturbations, such as the bifurcation itself
[Bertoldi and Tubino, 2007], alternating side bars [Miori et
al., 2007], and river meandering [Kleinhans et al., 2008], to
white noise perturbations, such as floods, circulation dy-
namics in the standing body of water, water surface slope
advantages, and planform advantages. Therefore we suggest
that asymmetrical bifurcations are prevalent because a
symmetrical bifurcation will eventually become asymmet-
rical due to myriad perturbations in nature. Once bifurca-
tions are asymmetrical, the nonuniform water surface
topography at the bifurcation and the effect of the bed ramp
on the flow field provide feedbacks that keep asymmetrical
bifurcations stable.

8. Conclusions

[49] We have attempted to explain the origin of asym-
metrical bifurcations of river channels by investigating their

Figure 12. (A) Water surface elevations on a bifurcation
taken with a Leica dGPS. Bold line is a 50-m running
average. (B) River bed elevations taken with a single beam
echo sounder. (C) Planview map of Mossy delta bifurcation
number 5 (location in Figure 1) showing the locations of
data track lines. Similar to Delft3D predictions, the channel
with a lower Q and a bed step (channel b) has an elevated
water surface relative to the projected uniform water surface
slope, while the channel with a higher Q (channel c) has a
depressed water surface.

Figure 13. Stable bifurcations from the Mossy delta (see
Figure 1 for locations) generally plot in the stable,
equilibrium space predicted by Delft3D. We multiplied Qa

by aa to remove the effect of different aspect ratios among
the natural bifurcations. The scatter in the field data is
related to natural bifurcations having bifurcate channels of
different widths and measurements of discharge and water
surface slope taken at less than bankfull discharge.

W09426 EDMONDS AND SLINGERLAND: STABILITY OF DELTAIC BIFURCATIONS

11 of 13

W09426



stability using a two-dimensional vertically integrated mor-
phodynamic numerical model (Delft3D). The morphody-
namic feedbacks between the evolving bed and water
surface create three distinct equilibrium functions where
the equilibrium discharge ratio (Qr) is a function of the
Shields stress in the unbifurcated reach (Qa). The first
function has a symmetrical division of discharge in the
bifurcate channels; the other two are asymmetric. With
equal downstream water surface elevations (no imposed
advantage for either channel), the stable, equilibrium Qr

becomes more asymmetrical as Qa increases because the
water surface elevation at the bifurcation rises, steepening
the water surface slope, and thereby requiring a higher Qa

for equilibrium. For unequal downstream water surface
elevations (imposed advantage for one channel) the equi-
librium Qr becomes more symmetrical as Qa increases
because at large Qa the water surface slope advantage
imposed by unequal downstream boundaries is a small
percentage of the overall water surface slope.
[50] When subjected to a perturbation, such as a small

sediment mound in a bifurcate channel, the asymmetrical
bifurcations return to their equilibrium configuration where-
as the symmetrical bifurcation moves to an asymmetrical
stable equilibrium solution. Our results suggest that asym-
metrical bifurcations are prevalent in nature because they
are stable to a wider range of perturbations.
[51] These results are supported by field data from

bifurcations of the Mossy delta in Saskatchewan, Canada.
Field hydraulic geometry data and a 60-year history of little
change suggest that the Mossy delta bifurcations are in
stable equilibrium with their flow field. The Mossy delta
bifurcations contain remarkably similar asymmetric bed
geometries and water surface profiles to those predicted
by Delft3D. Furthermore, when the Mossy delta bifurca-
tions are plotted on the stability diagram they plot in stable
space.

Nomenclature Table

C Chezy roughness, L1/2 T�1

C0 nondimensional Chezy bed roughness
Channel a the unbifurcated channel
Channel b the bifurcate channel with the smaller

discharge
Channel c the bifurcate channel with the larger

discharge
D channel depth, L

D50 median bed grain size, L
Dr average depth ratio; high discharge

channel divided by low discharge
channel

g acceleration due gravity, L T�2

hb, hc water surface elevations at the down-
stream boundaries of channels b and c, L

L bifurcate channel length, L
L0 bifurcate channel length relative to the

channel width
Q water discharge, L3 T�1

Qr water discharge ratio; high discharge
channel divided by low discharge channel

qs sediment transport rate per unit width, L2

T�1

Qs sediment transport rate, L3 T�1

Qs* sediment transport rate in a symmetrical
solution, L3 T�1

Qsbedload sediment transport rate of the bed load
fraction, L3 T�1

Qsr sediment flux ratio; high discharge
channel divided by low discharge channel

QsT transverse sediment flux at the bifurca-
tion, L3 T�1

subscript a, b, c refers to either channel a, b, or c
Tm morphological timescale, T

TND nondimensional time
W channel top-width, L

x, y planform dimension, L
Q Shields stress

Qcrit critical Shields stress for incipient motion
of a given sediment size

a channel aspect ratio; width divided by
depth

h bed ramp height, L
r fluid density, M L�3

rs sediment density, M L�3

to basal fluid shear stress M L�1 T�2
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