Rovuring oF HETEROGENEOUS SEDIMENTS OVER
MovagLg BED: MopEr, DEVELOPMENT

By Andre van Niekerk,' Koen R. Vogel,? Rudy L. Slingerland,3
and John S, Bridge*

ABstract: A one-dimensionaj numerical model of sediment routing is derived
to simulate erosion, transport, and deposition of individuaj size-density fractions.
in the bed materia] within a relatively straight, nonbifurcating aliyvia channel. The
reach of ipterest jg subdivided into 3 number of longitudina) elements of varying
width-averaged properties, During each time step, flow depths and velocities in

of sediment. The advantages of this model over previous models are 4 treatment
of turbulent fluctuations of beq shear stress, minimization of calibration factors,
and explicit consideration of multiple grain densities.
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of longitudinal elements (nodes) of varying width-averaged properties. Dur-

ometry is handled using coordinate stretching. The velocity profile _131 thii
vertical is calculated at each node using tggf fvor_l I%prn}an-tll’lreaxslgsyec;g;;é 1 (1)1‘3i <
ity distributi i i t diffusivities for
velocity distribution. Vertjcal sedu_nen. iffus; " the £ ned load
i lic distribution for diffusion of fluj
are computed assuming a parabo s ealoulod mo-
i load and the bed is calculate y
mentum. Interaction of the transported . ) s cal >
inui i -density fraction in an active
ed-continuity equation solved for each size s
lt;clyer. The adgan?ages of this approach over previous models are a treatment

of turbulent fluctuations of bed shear stress, mi_nimlzat}qn of calxbraflon
factors, and explicit consideration of multiple grain densities.

FLow MopEL

Mean flow velocity and depth at a node, nd, are _obtainefi from :ﬁ:
gradually varied flow and conservation of mass equations written in
coordinate system of Fig. 1

d—‘i oV, + gA% @) =QASo~8) ... (1)

FIG. 1. Schematic Representation of Gradually Varied Flow Model
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in which Q = water discharge; x = the downstream distance along the
channel; V, = the cross-sectionally averaged longitudinal flow velocity; g
= the gravitational acceleration; A = the cross-sectional area; d = the
flow depth; S, = the bed slope; and S; = the friction slope. Friction slope
is obtained from Manning’s equation

niv?
= kTMI_Qm ................................................. (3)
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where n = the Manning roughness coefficient (expressed in m'*), constant
throughout a run; k,, = 1 m'%/s; and R = the hydraulic radius (m).
Water discharge, bed elevations, and cross-sectional areas at each node
are specified as input at the start of a simulation, after which they evolve
according to the equations. Flow equations (1) and (2) are completed by
specifying one of two boundary conditions: a fixed flow depth at any node
in the channel or a constant water surface elevation at the downstream end
of the reach. It is assumed that the flow will always remain subcritical, as
is the case in most naturally occurring river systems. When flow becomes
supercritical, the flow conditions are approximated by the critical conditions.
It may be argued that this simple treatment of the flow is inadequate.
For example, more advanced approaches for calculating Sy in (3) (Brownlie
1983; White et al. 1987) are available. This first version of MIDAS was
intentionally kept simple, so that the contribution of each component could
be more fully understood. The second part of this article (Vogel et al. 1992)
shows that reasonable results can be obtained with this simplified approach.

Determination of Bed Shear Stresses and Shear Velocities
The skin friction component of the temporal mean shear velocity u, is

used as a measure of the force available to transport sediments. Einstein
(1950) and Einstein and Barbarossa (1952) proposed that the depth-
averaged velocity at a cross section for a rough boundary is given by
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where k, = the grain roughness, assumed to be 2.5 times the median size
of bed particles; and R’ = that portion of the hydraulic radius attributable
to skin friction. Shear velocity is calculated from the DuBoys (1879) equation

u, = \/% VGRS, e (5)

in which ¥ = the skin friction component of the temporal mean bed shear
stress hereafter called the effective bed shear stress; and p = the fluid density.
The average velocity and friction slope are obtained from (1)-(3), thereby
allowing (4) and (5) to be solved iteratively for R’ and thus u, and 7',

Shear Stress Distribution
It has long been established that flow turbulence results in a fluctuation
of local instantaneous bed shear stresses about a mean value (Blinco and
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Simons 1974; Cheng and Clyde 1972; Christensen 1972; Grass 1970). Be-
cause the modes and rates of sediment transport vary as a function of
turbulence (Grass 1982; Thorne et al. 1989), it is desirable to incorporate
a distribution of instantaneous bed shear stresses into a bed-load transport
model. Observations suggest that for fully turbulent flow, the instantaneous
bed shear stresses measured in time at a location (Fig. 2) approximately
follow a Gaussian distribution f(7'), with a coefficient of variation equal to
0.4 (Bridge 1981)

N — 1 —122[(x' =7 Vo2 i ()
&) = e SIS (

where 7' = the instantaneous effective bed shear stress; and o, = the
standard deviation of the instantaneous bed shear stress distribution. For a
hydraulically smooth flow, the distribution becomes more p_osmvely skewed
as a function of decreasing boundary Reynolds number (Blinco and Simons
1974; Grass 1970) and is better defined by the logarithm of (6) or by a
gamma function. . o
In the present model, the bedload transport rate of each size fraction is
calculated for each of N bed shear stress ranges using either (6) or its
logarithmic equivalent. Each range has a mean value of 7;, and a width A7’
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FIG. 2. Example of Discretized, Instantaneous Bed Shear Stress Distribution, with
Mean Value of 7’ and Standard Deviation of o,
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of 60./N. The proportion of time allotted to each shear stress range P,, is
obtained by integrating the distribution function over the interval Ar’.

Bedload Transport

By bedload we mean here all those sliding, rolling, and saltating grains
supported at least in part by collisions with other grains or contact with the
bed. In water, the grains travel within a few grain diameters of the bed as
a low-concentration, dispersed, grain flow. Grains are considered to be in
motion when

Ok > Oy oo R (7

@n which ©,, = the dimensionless bed shear stress of the kth shear stress
interval; and ©_, = the critical Shields parameter for the ith size and jth
density grain fraction.

Operationally, grains of fall velocity w;; are considered to be in bedload
transport under bed shear stress interval k when

Wiy Z BUL o (8)

where uk, = the effective shear velocity of the kth shear stress interval,
and B ranges from 1.25 (Bagnold 1973) to 0.8 (Engelund and Fredsoe 1976)
and here is given the value 0.8 (Bridge 1981).

Fall velocities for nonspherical particles w;; are obtained from the em-
pirical equation of Dietrich (1982)

log W, = —3.76715 + 1.92944(log D,) — 0.09815(log D, )?

— 0.00575(log D,)* + 0.00056(108 D,)* +veeennnrneenaaeniin. 9)
pWi
W, = — P
G g (10)
_ (o — P)9Dii;
D, = T (11)

where W, = the dimensionless settling velocity; D, = the dimensionless
grain diameter; o; = the mineral density of the jth fraction; v = the kin-
ematic viscosity; and Dn; = the nominal diameter of the ith grain size
fraction and the jth mineral density fraction. In applying the Dietrich equa-
tion in the model, it is assumed that the nominal diameter for a particle can
be represented by the grain size derived from sieve measurements and that
the fall velocity of a particle in a turbulent flow is the same as its fall velocity
in a quiescent fluid.

Bedload Formula

Of the many formulas predicting the bedload transport rate [Ackers and
White (1973), Bridge and Dominic (1984), Einstein (1950), Meyer-Peter
and Muller (1948), van Rijn (1984a); and Yang (1973), to name but a few],
a modified Bagnold equation (Bridge and Dominic 1984; Engelund and
Fredsoe 1976) was selected because: (1) It is a physically based equation
with experimentally determined constants; (2) the transport rate of each
grain size can be determined separately; (3) its parameters are easily cal-
culated and well suited to numerical modeling using shear stress intervals;
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and (4) it has been shown to fit natural data very well (Bridge and Dominic

1984).
The bedload transport equation is

s h ! 1
Loe = F,-,-Pkm (Uhre = Uae)(Tk — Te) e 12)

in which i, = the bedload transport rate (immersed weight transported
per unit width per unit time) of the ith size interval and jth density grains
due to the kth instantaneous shear stress interval; F;; = the volumetric
proportion of the ith-jth fraction in the active layer; P, = the propor-
tion of time the kth shear stress is active; A = a parameter equal to 1/k
In(z/k), where k = von Karman’s constant, z = the distance from the bed
to the center of fluid thrust on bedload grains, and k = the bed roughness;
tan a = a dynamic friction coefficient; and u,c; and 7., = the critical shear
velocity shear stress necessary to entrain the Jj size-density combination.
Originally, Bridge and Dominic claimed h/tan o was weakly a function of
excess shear velocity and grain fall velocity. Recently however, Bridge (per-
sonal communication, 1988) has suggested-that a constant value of 10 may
be more appropriate for lower stage plane beds and dune backs, while a
value of 17 is a reasonable average for upper stage plane beds. This is used
in the present formulation.

Reasonable values of & range from 6.8 to 8.5 for hydraulically rough flows
(Bridge and Bennett 1991). Unlike some previous formulations, volumetric
proportion is used in (12), because the probability of a grain fraction being
available for transport is proportional to its volume in the active layer. To
obtain the total transport rate of the ith-jth fraction, (12) must be summed
over all instantaneous bed shear stresses for which the fraction is in motion
as bedload

iy = kE SRR EEREEE (13)

where ¢ = the interval of smallest instantaneous shear stress greater than
7.;; and f = the interval of largest instantaneous shear stress less than or
equal to the shear stress necessary to suspend the grain.

Critical Shear Stress

Accurate prediction of bedload transport depends strongly upon the crit-
ical shear stress necessary to initiate motion of a specific size-density particle
on a heterogeneous bed. The Shields relationship (1936) is clearly inappro-
priate for grains much larger or smaller than the medium size, because the
relationship does not account for relative protrusion and grain hiding effects
(Fenton and Abbott 1977; Komar 1987a, 1987b, 1989). Recent entrainment
work (Andrews 1983; Egiazaroff 1967; James 1990; Komar 1987a, 19870,
1989; Parker et al. 1982; Slingerland 1977) has focused on determining the
relationship between a grain’s critical Shields parameter 0., and the ratio
of its grain diameter D;; to the medium grain diameter Ds,. MIDAS allows
selection of one of three different formulations (Egiazaroff 1967; Komar,
1989; James 1990), which were chosen for incorporation into the model
based on their physical derivation and their experimental verification against
large data sets. ,

The first, the modified Egiazaroff entrainment equation for mixed sizes
(0.3 < D;/Ds; < 10) under hydraulically rough flows, is
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0., = 0., _dog2(19) (14)

D..
log?{ 19 —”)
g( Dso

in which ©,, = the critical Shields parameter for the median size; D;; =
the grain size of the ith size fraction of the jth density species; Dso = the
median bed grain size; and

- Ty
e (o; — 0)9D;
where 7., = the critical shear stress necessary to entrain grains of the ith

size and jth density interval.
The second, the James entrainment function, is

0. =

cij

0]

kikysin(d — B) (16)

d
16.5311 [10gz(3o.z . kg’—;—— k)] [Coksk(kxcos & + ks) + Crkoks(kssin & + ko)]
10

where k,—k,, = parameters defined by James (1990); Cp, and C, = the
coefficients of drag and lift, respectively; ¢ = the grain pivot angle; § =
the bed slope angle; and x' = the velocity profile correction factor, which
has a value of 1.0 for hydraulically rough flow (James 1990).

The third entrainment function, Komar’s entrainment function, is valid
over the range 0.3 < D,;/Dsy < 22, and can be formulated as (Komar 1989)

0., = 0., (%}) ........................................ 17

A matter of recent dispute has been the appropriate value of min (17)
(Andrews 1983; Komar 1987b; Parker et al. 1982). Recently, Komar (1989)
has defended his choice of m = 0.65, indicating that Andrews’ sediment
collection method may not have captured the largest entrained clasts, while
Parker et al. were examining relative transport rates using (17) as a nor-
malization equation for their transport relationships.

Egs. (14)-(17) were originally developed for single density sediments. It
is assumed that they can be applied to sediments with multiple density
fractions. Note that for very small D;;/Ds,, the critical shear stress of grain
D,, as determined by (14) or (16), becomes infinite.

The critical Shields parameter of the median size O is assumed to be
accurately predicted by the Shields curve under the assumption that a grain
of the medium size has the greatest probability to rest on grains of nearly
equal size. The Shields curve is approximated by three equations in the
manner of Bridge (1981)

0., = 0.1(Rep)™3  forRep <1 .oovvvviiviinonrieiienn (18)

In(®,,) = —2.26 — 0.905 In(Re,) + 0.168 In*(Rey),

for 1 < REp < 60 . onnee it (19)

O, = 0.045,  Rep > 60 ... (20)
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u,D
Rep = 5 e (21)

14

in which Rep = the grain Reynolds number.

SusPENDED LoAD TRANSPORT

The suspended load is the width- and depth-integrated distribution of
suspended solids carried forward by a two-dimensional turbulent flow. As
in other formulations, it is assumed that the boundary between the bed-
load and suspended load occurs at the top of the moving bed layer, a distance
z = a, from the reference plane (Fig. 3).

The moving bed layer thickness a can be calculated from any number of
formulations and in the model is computed using either the relationship of
Einstein (1950)

or the relationship of Bridge and Dominic (1984)

a
e = 2530w - @) F 0.5 oo (23)

where ©,, = the dimensionless bed shear stress using 7; and Ds,. These
equations for moving bed layer thickness were derived for beds with uniform
sediment sizes, and their applicability to the case of individual size density
fraction needs further investigation.

Operationally, grains are considered to be in suspension when (7) is true,
but (8) is false. The suspended sediment concentrations for the individual
size-density fractions are calculated from the convection-diffusion equation
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FIG. 3. Schematic Representation of Grid Used to Calculate Suspended Load and
of Treatment of Bed after Erosion and Deposition
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for the vertical distribution of suspended sediment. This is derived from a
mass balance for suspended sediment by assuming that steady state con-
ditions apply over a time step, that the dependent variables are constant in

a cross-stream (y-) direction, and that the x-directed diffusivity is negligible.
The equation is

2 V@ + 2 (V. = w)CE] = 5l (] o @D

in which C(z);; = the local suspended sediment concentration (total im-
mersed mass of solids of the ith-jth fraction per unit volume of fluid);
V, = the local, temporally averaged vertical fluid velocity; and &, = the
sediment eddy diffusion coefficient in the vertical. The local vertical velocity
V, is considered to be insignificant.

Fluid and Sediment Momentum Transfer Components

Solution of the equations describing the vertical distribution of suspended
sediment requires an accurate determination of flow velocity and turbulent
diffusivity in the vertical. These in turn depend upon such factors as uni-
formity and steadiness of flow, bed friction (which is dependent on the flow
regime), and the presence of suspended sediment. Here the approach of
Einstein and Barborossa (1952) is adopted, although the accuracy of this
approach under nonuniform flow conditions needs to be verified. Under
uniform flow conditions, the von Karman-Prandtl mixing length model of
turbulence describes the vertical distribution of velocity and turbulent dif-
fusivity quite well (Einstein 1950; Einstein and Barborossa 1952). If the bed
roughness is much smaller than the flow depth, the resulting logarithmic
velocity distribution, written in terms of the cross-sectionally averaged flow

velocity V, is

V(z) = ”—K* [log<§> + 1] Ve (25)

in which V,(z) = the longitudinal velocity as a function of depth; and d =
the total flow depth. Following Middleton and Southard (1984), the sedi-
ment eddy diffusion coefficient ¢, is assumed to equal the fluid eddy diffusion
coefficient in the vertical ¢,. If a linear distribution of shear stress is assumed
in the fluid, then the vertical distribution of the eddy diffusion coefficient
can be written as

6, = KU, 2 (d = 2) oo (26)

Although this is the approach used, it should be noted that van Rijn
(1984b), using the results of Coleman (1970), argues for a constant turbulent
diffusivity in the upper half of the channel depth

1
€ = Emax = (KULDY) « e 27

This result is contradicted by the experiments of Ueda et al. (1976) and
Nezu and Rodi (1986). Van Rijn (1984b) suggests further maodifications to
take into consideration the effects of nonuniformity in the flow. A simple
first-order differential equation due to van Rijn can be used to adjust the
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maximum eddy viscosity under nonuniform flow conditions, although the
van Rijn (1984b) model to date is calibrated solely for flow over trenches
dredged perpendicular to the flow direction.

Equilibrium Approximation

For reaches approximated by long distance steps (d/Ax very small), the
horizontal gradient term, dlax[ V,(2)C(z),;] becomes negligible, in which case
integration of (24) yields the Rouse (1937) equation

C(z) _ <D -z a Gught.).
C(a);; z D-a

in which C(z); and C(a); = the concentrations of the ith-jth fraction at
flow heights z and 4, respectively; and u, = the total, time-averaged shear
velocity (not just the skin-friction component). Eq. (28) results from a linear
shear stress distribution and a logarithmic velocity distribution, and assumes
that the concentrations are not affected by turbulent fluctuations in 7.

_ The reference concentration at the height of the moving bed layer C(a);;
is calculated by assuming that grains in suspension have a concentration in
the moving bed layer predicted by the Bridge and Dominic equation (12)

iby

C(a); = U, ag

in which C(a); = the concentration of the ith-jth size-density fraction in
the moving bed layer; U,,; = the bed-load grain velocity of the ith-jth size-
density fraction; and a = the thickness of the moving bed layer.

Bridge and Dominic (1984) derive an expression for -U,,

Upy = Bty = Byey) <o e neeeene et e e e (30) -

Finally, the suspended load transport rate of a grain size-density fraction
{hr(()iuf%h a cross section per unit width, i, is the depth-integrated suspended
oad flux

i, = f VAZ)C@)EZ oo e . (31)

Nonequilibrium Approximation

For short and rapidly varying reaches, (28) is inappropriate, and (24) must
be solved in full, as discussed in the following. In this case, (22), (23), (29),
and (30) are used to determine the boundary values.

TREATMENT OF BED

In previous studies (Alonso et al. 1981; Bennett and Nordin 1977; Karim
etal. 1987; Lee and Odgaard 1986; Park and Jain 1987; Rahuel et al. (1989),
the bed region is divided into two or three horizons: (1) An upper zone,
termed the mixing layer, representing the’ space occupied by dunes and
ripples; (2) a top horizon of the mixing layer, termed an active layer, in
which continous exchange of sediment particles between the bed and flow
takes place; and_(3) the subjacent static bed. As pointed out by Rahuel et
al. _(}989), the distinction between an active and mixing layer is somewhat
artificial, depending as it does on the time scale of consideration. At time
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scales shorter than it takes for a bedform to traverse its own wavelength,
the two are identical.

In MIDAS only an active layer is defined (Fig. 3). The active layer, T,
is considered to consist of j well-mixed density fractions, each with its own
size distribution. Each size class is represented by a median diameter D;;.
Particle exchange occurs between the active and moving bed layers during
each time step, after which the particle size-density distribution in the active
layer is updated to allow for any erosion or deposition of the different size-
density fractions (Fig. 3). If net degradation occurs during the time step,
the active layer is replenished from the underlying parent bed material by
an amount equal to the thickness of sediment eroded (Fig. 3). If net dep-
osition occurs, the base of the active layer moves up by an amount equal
to the thickness of deposited material (Fig. 3).

Previous authors have considered the active layer thickness to be a func-
tion of dune height or, in the absence of dunes, water depth (Lee and
Odgaard 1986; Rahuel et al. 1989), or of particle size (Borah et al. 1982;
Park and Jain 1987). In MIDAS, it is defined from sensitivity experiments
as

El

T = 2Dy o e e (32)

TCSO

This formulation seems reasonable because active layer thickness should
increase with increasing excess shear stress.

Computation of the sediment mass exchange between the flow and the
active layer, and consequently, computation of erosion and deposition at
each downstream site, is accomplished using the conservation of mass equa-
tion written for each size-density fraction. It is assumed that the time step
has been chosen sufficiently small such that fluid flow and sediment transport
rates may be considered constant over the time step. For steady flows, the
sediment continuity equation for a size-density interval expressed in terms
of width-integrated sediment discharge is

d 1 19 ,. a .. _
1-p Py (bzy;) + m l:-égx (biy,;) + . (blsii)] =0 ....... (33)

in which p = bed porosity; b = the width of the active bed, assumed to
be equal to the flow width; z,; = bed elevation attributable to the ith-jth
bed fraction; and i,; and i, are the bedload (kg s~?) and suspended load
(kg s—! m~?) transport rates of the ith-jth fraction as defined in (13) and
(31). If the theoretical transport rate of a certain size-density fraction exceeds
the amount available in the active layer, the calculated bedload and sus-
pended load transport rates of that size-density fraction are reduced until
the amount eroded just equals the amount available. If the theoretical
transport rate of every size-density fraction is exceeded, the entire active
layer is eroded.

SoLuTION OF EQUATION SET

Solution of the equation set proceeds according to the flow diagram of
Fig. 4. The reach of interest is discretized into a finite number of nodes,
Ax apart, at which hydraulic geometries and bed size-density distributions
are known. At the start of a new time step, the gradually varied flow
equations [(1)—(3)] are solved using the standard step method of Henderson
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FIG. 4. Flow Chart of Model

(1966), subject to a water surface elevation at the downstream boundary
node. Next, the skin friction component of bed shear stress is calculated at
each node via (4) and (5). A distribution of instantaneous bed shear stresses
and the momentum transfer coefficients for use in the suspended load cal-
culations are computed from (6) and (26), respectively.

_ Next, the critical shear stresses for suspension of each size-density fraction
in the active layer at each node are calculated from (8)—(11), and the critical
shear stresses for entrainment are determined using (14)-(17). Bedload
transport rates of each fraction at each node are calculated via (12) and
(13). This provides the reference concentrations necessary to calculate the
suspended loads from (28)—-(31).

In the equilibrium case the suspension profile is calculated from (28). In
the nonequilibrium case (24) is integrated over the flow width and is solved
using a finite-volume formulation, whereby the suspension region is divided
into a number of quadrilateral volumes as shown in Fig. 3, with equal spacing
of nodes in the longitudinal direction and a constant number of nodes in
the vertical. This solution procedure deals with complicated flow geometry
without the necessity of writing the equation in curvilinear coordinates, while
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preserving the property of conservation. The suspension region is considered
to extend from the top of the moving bed layer to the free water surface,
the two points where boundary conditions are specified (Fig. 3). At every
grid point in the vertical, the values of C(z);, are calculated at the discrete
2/D value for horizontal grid x-value. The new values of C(z),; are then
calculated for the same z/D value at the next horizontal grid point. By step-
wise repetition of this basic operation, the whole field of interest is covered.
The difference equations in the existing model express the mean values of
each of the terms in (24) in terms of the unknown values of C(z);; down-
stream and the known values of C(z);; upstream. Linear variations of C(z);;
over a grid element are assumed in both the x- and z-directions, corre-
sponding to a Crank-Nicholson procedure. The resulting equation set can
be reduced to and solved as a tridiagonal matrix at each step in the marching
procedure. Eq. (31) is then solved for each node using the calculated con-
centration values.

Next, the bed continuity equation (33) is solved for each size-density
fraction at each node, nd, using a modified Preissmann scheme (Lyn and
Goodwin 1987), which has been shown to be both accurate and stable for
this application

At b . .
A(beii)r - Ax(o; — p)(1 - P)({Q[A<§ oy blﬁi>nd+1]}
ow s ) »

in which A (variable)subscripl = (Variable)subscript - (variable)subscripl-l; and @
= a weighting factor between zero and one. In the model, ® is set t0 0.55,
as this reasonably approximates a central difference scheme (& = 0.5)
without its inherent stability problems. Finally, at each node, new propor-
tions of each size-density fraction of the active layer and the bed elevation
are recomputed, after which the computation proceeds to the next time
step. In the case of net erosion, the new active layer will be a composite of
the remaining active layer material and of the underlying material (Fig. 3).
In the case of net deposition, the new active layer will be a composite of
the remaining active layer material and of the deposited material (Fig. 3).

CONCLUSIONS

A one-dimensional sediment routing model has been developed for sim-
ulating water and sediment transport of heterogeneous size-density material
within a relatively straight, nonbifurcating alluvial channel. Its advantages
over previous models are a treatment of turbulent fluctuations of bed shear

stress, minimization of calibration factors, and explicit consideration of mul-
tiple grain densities.

ACKNOWLEDGMENTS

The writers would like to express their grateful appreciation to the South
Africa Chamber of Mines Research Organization for their financial support
of this project. They would also like to thank Dr. C. James and Dr. P.
Fleming for their input and output during the model development, and the
anonymous reviewers for helpful criticism of an earlier version of the article.

258

L —

APPENDIX |. REFERENCES

Ackers, P., and White, W. R. (1973). “Sediment transport—New approach and
analysis.” J. Hydr. Div., ASCE, 99(11), 2041-2060.

Alonso, C. V., Borah, D. K., and Prasad, S. N. (1981). “Numerical model for
routing graded sediments in alluvial channels.” Final Report to the Vicksburg
District U.S. Army Corps of Engineers, U.S. Department of Agriculture Sedimen-
tation Laboratory, Oxford, Miss.

Andrews, E. D. (1983). “Entrainment of gravel from naturally sorted river bed
material.” Bull. Geolog. Soc. Am., 94, 1225-1231.

Bagnold, R. A. (1973). “The nature of saltation and bedload transport in water.”
Proc. Royal Soc. London, London, U.K., 332A, 473-504.

Bennett, J. P., and Nordin, C. F. (1977). “Simulation of sediment transport and
armoring.” Hydrolog. Sci. Bull. 22(4), 555-569.

Blinco, P. H., and Simons, D. B. (1974). “Characteristics of turbulent boundary
shear stress.” J. Engrg. Mech. Div., ASCE, 100(2), 203-220.

Borah, D. K., Alonso, C. V., and Prasad, S. N. (1982). “Routing graded sediments
in streams: Formulations.” J. Hydr. Div., ASCE, 108(12), 1486-1503.

Bridge, J. S. (1981). “Hydraulic interpretation of grain size distributions using a
physical model for bedload transport.” J. Sedimentary Petrology, 51(4), 1109—
1124. :

Bridge, J. S., and Bennett, S. J. (in press). “A model for the entrainment and
transport of sediment grains of mixed sizes, shapes and densities.” Water Resour.
Res.

Bridge, J.'S., and Dominic, D. D. (1984). “Bed load grain velocities and sediment
transport rates.” Water Resour. Res., 20(4), 476—490.

Brownlie, W. L. (1983). “Flow depth in sand-bed channels.” J. Hydr. Engrg., ASCE,
109(7), 959-990.

Cheng, E. D. H., and Clyde, C. G. (1972). “Instantaneous hydrodynamic lift and
drag forces on large roughness elements in turbulent open channel flow.” Sedi-
mentation, H. W. Shen, ed., Fort Collins, Color., 3-1 to 3-20.

Christensen, B. A. (1972). “Incipient motion on cohensionless channel banks.”
Sedimentation, H. W. Shen, ed., Fort Collins, Color., 4-1 to 4-22.

Coleman, N. L. (1970). “Flume studies of the sediment transfer coefficient.” Water

Resour. Res., 6(3), 801-817.

Dietrich, W. E. (1982). “Settling velocity of natural particles.” Water Resour. Res.,
18(6), 1615-1626.

DuBoys, M. P. (1879). “Etudes du regime et I’action exercee par les eaux sur un lit
a fond e graviers indefiniment affouiable.” Annales de ponts et chausees, Paris,
France, 5(18), 141-195 (in French).

Egiazaroff, J. V. (1967). “Sediment transportation mechanics—Initiation of mo-
tion.” J. Hydr. Div., ASCE, 93(4), 281-287.

Einstein, H. A. (1950). “The bed-load function of sediment transport in open channel
flows.” Technical Bulletin, No. 1028, Soil Conservation Service, U.S. Department
of Agriculture, Washington, D.C., 1-78.

Einstein, H. A., and Barbarossa, N. L. (1952). “River channel roughness.” Trans.,
ASCE, 117, 1121-1132. i

Engelund, F., and Fredsoe, J. (1976). “A sediment transport model for straight
alluvial channels.” Nordic Hydrol., Lingby, Denmark, 7, 293-300.

Eenton, J. D., and Abbott, J. E. (1977). “Initial movement of grains on a stream
bed— Effect of relative protrusion.” Proc. Royal Soc., London, U.K., 352A,523—
537.

Grass, A. J. (1970). “Initial instability of fine bed sands.” J. Hydr. Div., ASCE,
96(3), 619-632. :

Grass, A. J. (1982). “The influence of boundary layer turbulence on the mechanics
of sediment transport.” Proc. Euromech. 156/ “Mechanics of sediment transport.”
B. Mutulu Sumer and A. Muller, (eds.), Instabul, Turkey, 3-18.

Henderson, F. M. (1966).“Open channel flow.” Macmillan, New York, N.Y., 522.

259




James, C. S. (1990). “Prediction of entrainment conditions for nonuniform, non-
cohesive sediments.” J. Hydr. Res., 28(1), 25-41.

Karim, M. F., Holly, F. M., Jr., and Yang, J. C. (1987). “JALLUVIAL numerical
simulation of mobile bed rivers, Part I. Theoretical and numerical principles.
Report no. 309, Iowa Institute of Hydraulic Research, 1-73.

Komar, P. D. (1987a). “Selective gravel entrainment and the empirical evaluation
of flow competence.” Sedimentology, 34(6), 1165-1176.

Komar, P. D. (1987b). “Selective entrainment by a current from a bed of mixed
sizes— A reanalysis.” J. Sedimentary Petrology, 57(2), 203-211.

Komar, P. D. (1989). “Flow-competence evaluations of the hydraulic parameters of
floods: An assessment of the technique.” Floods: Hydrological, sedimentological
and geomorphological implications, K. Beven and P. Carling, eds., John Wiley
and Sons, Chichester, United Kingdom, 107-134.

Lee, H.-Y., and Odgaard, A. J. (1986). “Simulation of bed armoring in alluvial
channels.” J. Hydr. Engrg., ASCE, 112(9), 794—801.

Lu, J. Y., and Shen, H. W. (1986). “Analysis and comparisons of degradation
models.” J. Hydr. Engrg., ASCE, 112(4), 281-299.

Lyn, D. A., and Goodwin, P. (1987). “Stability of a general Preissman scheme.” J.
Hydr. Engrg., ASCE, 113(1), 16-28.

Meyer-Peter, E., and Muller, R. (1948). “Formulas for bed load transport.” Proc.
2nd Congress of the Int. Assoc. for Hydraulic Research, Stockholm, Sweden, 39—
64.

Middleton, G. V., and Southard, J. B. (1984). “Mechanics of sediment movement.”
Society of economic paleontologists and mineralogists short course No. 3, 1-401.

Nezu, I., and Rodi, W. (1986). “Open-channel flow measurements with a laser

- Doppler anemometer.” J. Hydr. Engrg., ASCE, 112(5), 335-355.

Park, 1., and Jain, S. C. (1987). “Numerical simulation of degradation of alluvial
channels.” J. Hydr. Engrg., ASCE, 113(7), 845-859.

Parker, G., Klingeman, P. C., and McLean, D. G. (1982). “Bedload and size dis-
tribution in paved gravel-bed streams.” J. Hydr. Div., ASCE, 108(4), 544~-571.
Rahuel, J. L., Holly, F. M., Belleudy, P. J., and Yang, G. (1989). “Modeling of
riverbed evolution for bedload sediment mixtures.” J. Hydr. Engrg., 115(11),

1521-1542.

Rouse, H. (1937). “Modern conceptions of the mechanics of turbulence.” Trans.,
ASCE, 102, 436-505.

Shields, A. (1936). “Anwendung der Ahnlichkeitsmechanik und der Turbulenzfor-
schung auf die Geschiebebewegung.” Preussische Versuchanstalt fur Wasserbau
und Schiffbau, Milleilungen, 26, 1-26 (in German).

Slingerland, R. L. (1977). “The effect of entrainment on the hydraulic equivalence
relationships of light and heavy minerals in sand.” J. Sedimentary Petrology, 47(2),
137-150.

Thorne, P. D., Williams, J. J., and Heathershaw, A. D. (1989). “In situ measure-
ments of marine gravel threshold and entrainment.” Sedimentology, 36(1), 61-74.

Ueda, H. Molier, R., Komori, S., and Mizhushina, T. (1976). “Eddy diffusivity near
the free surface of open channel flow.” Int. J. Heat Mass Transfer, 20, 1127-1136.

van Rijn, L. C. (1984a). “Sediment transport. Part 1: Bed load transport.” J. Hydr.
Engrg., ASCE, 110(10), 1431-1456.

van Rijn, L. C. (1984b). “Sediment transport. Part 1I: Suspended load transport.”
J. Hydr. Engrg., ASCE, 110(11), 1613-1641.

van Rijn, L. C. (1984c). “Mathematical modeling of suspended sediment in non-
uniform flows.” J. Hydr. Engrg., ASCE, 112(6), 433—455.

Vogel, K. R., van Niekerk, A., Slingerland, R. L., and Bridge, J. S. (1992). “Routing
of heterogeneous size-density sediments over movable stream bed: Model verifi-
cation and testing.” J. Hydr. Engrg., ASCE, 118(2), 263-279.

White, W. R., Bettess, R., and WangS. (1987). “Frictional characteristics of alluvial
streams in the lower and upper regimens.” Proc. Inst. Civ. Engrg., Part 11, 83.
Yang, C. T. (1973).“Incipient motion and sediment transport. » J. Hydr. Div., ASCE,

99(10), 1679-1704.

260

s

ApPENDIX II.

NOTATION

The following symbols are used in this paper:

Useij

Vx’ Vy, Vz

wn

cross-sectional flow area (m?);

height of moving bed layer (m);

empirical constant used in suspension inequality;

flow width (m);

coefficient of drag;

local suspended sediment concentration at height z of grain
size i and mineral density j (kg/m?);

coefficient of lift;

grain diarneter of grain size fraction i of mineral density j

(m);

“pominal grain diameter of grain size fraction i of mineral

density j (m);

dimensionless grain diameter;

median grain diameter of active layer (m);

flow depth (m);

smallest instantaneous shear stress interval greater than 7.
volumetric proportion of grain size interval i and mineral
density j in active layer;

largest instantaneous shear stress interval less than suspen-
sion shear stress;

gravitational acceleration (m/s%);

constant in (12) and (30);

bedload transport rate in immersed weight per unit width
per unit time (kg/s?);

depth-integrated suspended load transport rate per unit width
(kg/s/m); :

coefficient in Manning’s equation (1 m*?s~1);
characteristic bed roughness (m);

parameters in James entrainment function;

coefficient in Komar entrainment function;

Manning’s roughness coefficient (m');

node number;

proportion of time kth shear stress interval is active;

bed porosity;

flow discharge (m*/s);

hydraulic radius (m);

grain Reynolds number;

friction slope;

bed slope;

active layer thickness (m);

time (s);

near-bed velocity of grain size i of mineral density j (m/s);
critical shear velocity necessary to entrain grain size i of min-
eral density j (m/s);

skin friction component of mean, time-averaged bed shear
velocity (m/s);

fluid velocity along the x-, y-, and z-axis, respectively (m/s);
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longitudinal velocity as function of depth (m/s);

mean longitudinal flow velocity (m/s);

dimensionless settling velocity;

settling velocity of grain size interval i of mineral density j
(m/s);

distance along axis parallel to bed in flow direction (m);
vertical profile correction factor in James entrainment
function;

distance along axis parallel to bed in cross-flow direction (m);
distance normal to bed (m);

bed elevation attributable to ith grain size fraction of mineral
density j (m);

dynamic friction coefficient in modified Bagnold equation;
bed slope angle;

sediment eddy diffusion coefficient in vertical (m?s);

fluid eddy diffusion coefficient in vertical (m?/s);
dimensionless critical shear stress necessary to entrain me-
dian grain diameter;

dimensionless bed shear stress;

dimensionless critical shear stress necessary to entrain grain
i of mineral density j;

von Karman’s constant;

kinematic fluid viscosity;

fluid density (kg/m?);

mineral density j (kg/m?);

standard deviation of shear stress distribution (Pa);
instantaneous effective bed shear stress (Pa);

critical bed shear stress necessary to entrain grain size i of
mineral density j (Pa);

critical bed shear stress necessary to entrain median grain
diameter (Pa);

skin friction component of time-averaged, median bed shear
stress (Pa);

weighting factor for Preissman difference scheme; and
grain pivot angle.

Subscripts and Superscripts

=
AN A AN TR

(I T

o

at height a above bed;
bedload;

grain size interval;

mineral density;

shear stress interval number;
node number;

suspended load;

at height z above bed; and
skin friction component.
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ROUTING OF HETEROGENEOUS SEDIMENTS OVER
MoOVABLE BED: MODEL VERIFICATION

By Koen R. Vogel,! Andre van Niekerk,? Rudy L. Slingerland,®
and John S. Bridge*

ABSTRACT: A one-dimensional numerical model of heterogeneous size-density
sediment transport has been developed to simulate the movement of graded sed-
iments in natural and laboratory flow reaches. Predicted temporal and spatial var-
iations in bed and armor-layer grain size distributions, eroded grain size distribution,
eroded thicknesses, and total bedload transport rates compare quite favorably to
observed variations in flumes, the San Luis canal, Colorado, and the East Fork
River, Wyoming, for a large variety of flow scales and flow conditions. The main
advantages of this model over others is the high degree of accuracy of model results
obtained using only bed and flow variables as input, the treatment of turbulent
fluctuations of bed shear stress, the minimization of calibration factors, and the
explicit treatment of multiple grain densities. In addition, only the active layer
thickness must be calibrated.

INTRODUCTION

A model investigating density and size sorting (MIDAS) has been de-
veloped (van Niekerk et al. 1992) to predict the transport of heterogeneous
size-density sediments under nonuniform, quasi-unsteady, cross-sectionally
averaged flow conditions. MIDAS was developed to accurately predict tem-
poral and spatial variations in: (1) The flow field; (2) the size-density dis-
tributions of the bed material; (3) total transport rates of all size-density
fractions making up the bed; and (4) bed degradation and aggradation.

The purpose of this article is to demonstrate that MIDAS performs well

~when compared against flume data of Little and Mayer (1972) and Ashida

and Michiue (1971), and field data from the San Luis Valley canals collected
by Lane and Carlson (1953) and from the East Fork River data collected
by Leopold and Emmett (1976) and Mahoney et al. (1976). In addition, its
use in predicting the occurrence of heavy mineral placers in a generic alluvial
fan is demonstrated.

SPECIFIC FORMULATION OF MODEL

The input parameters used in the model (van Niekerk et al. 1992) can be
divided into three categories: (1) Physical constants known with some pre-
cision, e.g., the gravitational acceleration, dynamic viscosity of fluid, etc.;
(2) numerical parameters used in discretization and solution schemes, e.g.,
the number of distance steps or the number of shear stress intervals; and
(3) parameters defining how the model approaches the physics of the prob-
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