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ABSTRACT

Numerical modeling of the longitudinal profiles of rivers at grade is accomplished using the basic equa-
tions of open-channel fiow, sediment transport equations, and empirical relations for downstream variation
in flow discharge, sediment discharge, sediment caliber, and channel width. Only in some cases are the
computed stream profiles fit exactly by any one of the commonly supported mathematical function analogs
to graded profile form—exponential, logarithmic, or power function, but in most cases any of these func-
tions can provide a fit with a degree of error smaller than would be noted in treating field data. Profiles
dominated by spatial change in fluid and sediment discharge are distinctly power functions, while profiles
dominated by sediment size reduction are not necessarily exponential in form. Other important controls on
profile shape are the degree of downstream width change in response to increasing discharge and the general
range of sediment size. A dynamic model of a river’s approach to grade indicates that disequilibrium river
profiles closely approximate a graded profile shape even while the general slope is relatively high, and
significant erosion remains to achieve equilibrium.

INTRODUCTION spondence between fairly smooth river
The longitudinal profiles of many graded profile curves and mathematical functions
rivers have smooth, concave-upward curves proposed to describe those profiles. But the
similar to graphic curves produced by a vari- question remains open whether even an ide-
ety of simple mathematical functions. Several  2lly graded river profile will match the curve
of these functions have been adopted by dif-  form of any fairly simple mathematical func-
ferent researchers as the actual descriptors of ~ ton.
the profile form of the graded river, but none There is ample reason to. pursue the ra-
of these equations has been shown to be gen-  tional description and prediction of river
erally applicable in the field. The strongest profiles. If we can adequately describe the
arguments for particular mathematical ideal, graded forms for particular rivers, then
analogs to graded profiles (cited later) derive deviations from these forms can be consid-
those functions by rational analysis of con- ered as significant sources of information.
trols on the river system in equilibrium, with Local deviations can be investigated as signs
the mathematics of the analysis determining  Of tectonic uplift or tilting, as in work by Vol-
the curve form that stream profiles should at - kov et al. (1967). Rational equations for river
least approximate. profiles are used in paleogeomorphological
Some rivers that .are seemingly graded reconstruction from stream terraces or fluvial |
have longitudinal profiles which deviate sediments, with the profile being extrapolated
strongly from a smooth curve, likely due to upstream to predict slopes and paleorelief in

local influence of major_tributaries, discon- ~ SOuUrce areas, or downstream to determine
tinuous changes in sediment caliber down-  base level. A number of mathematical models
stream, pool and riffle sequences, effects of ~ that have been developed to describe pro-
geology on vegetation and groundwater re-  gressive changes in stream channels and their

gime, and so on. It is tempting to think that ~ sediments assume a priori that particular,
such “‘noise” may not only be responsible for ~ simple functions adequately describe slope
obviou$ deflections in particular river pro-  change downstream. For example, both the
files, but also for the general lack of corre- ~ model reported by Strahler (1952, p. 936-
937) for long-term river channel lowering and
! Manuscript received April 7, 1986; accepted that developed by Hamblin et al. (1981) for
August 8, 1986. ’ ’ short-term channel erosion due to uplift are
based on assumptions that river profiles are
[JournaL oF GEoLOGY, 1987, vol. 95, p. 15-33] exponential curves
© 1987 by The University of Chicago. All rights p . .
reserved. The purpose of this study is to explore a
0022-1376/87/9501-0004$1.00 fluvial mathematical model of river profiles
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that is significantly more comprehensive than
previously employed, in order to address the
following objectives: (1) Calculate ideal,
graded river profiles as functions of water dis-
charge, sediment caliber, and sediment dis-
charge, and test the approximation of these
profiles by the mathematical curves com-
monly proposed for the prediction of graded
river profiles. (2) Calculate the forms of river
profiles during their approach to grade in or-
der to understand properly what erosional
and form characteristics rivers display in that
state.

In the present analysis the definition of
grade is one where the river has achieved a
mass equilibrium and is in a state of no addi-
tional morphometric change. The river is
viewed in ‘‘graded time” (Schumm and
Lichty 1965), where inflows of water and sed-
iment are considered as constant through
time, barring the effects of major climatic
changes. The effects of individual flood
events are not of interest, and a single dis-
charge value is taken to represent the hydro-
logic regime for each point along the river.

COMMONLY PROPOSED RELATIONS DESCRIBING
PROFILE FORM

The graded stream is one which has be-
come adjusted in form to transport both wa-
ter and sediment discharges supplied by its
drainage over a period of years (Mackin
1948). Therefore a minimal set of controlling
variables for the form of a graded stream in-
cludes discharge, sediment load, and sedi-
ment characteristics such as mean grain size.
Past attempts to produce mathematical ex-
pressions for equilibrium stream profiles may
be classified into three groups by their ap-
proach to this set of variables.

The first group neglects two of the vari-
ables in favor of a single controlling, or at
least dominant, variable. Those accepting
grain size variation as the controlling factor
rationally derive exponential profile forms
(Sternberg 1875; Shulits 1941; Yatsu 1955).
Those taking discharge as the controlling fac-
tor develop empirically calibrated power
functions for slope which give profiles that
are either logarithmic or are themselves sim-
ple power functions (Gilbert 1877; Leopold
and Maddock 1953; Carlston 1968).

Rather than ignore important controlling
variables, the second group includes both dis-

charge and grain size, and sometimes sedi-
ment load, combined in empirical equations
(Lane 1937; Hack 1957). Additional control-
ling variables have been proposed to supple-
ment or replace the above, including ones
controlling channel geometry (Rubey 1933)
and pattern (Schumm 1960). This general ap-
proach yields equations for channel slope
that are combinations of power functions.

The third group avoids primary considera-
tion of any of the controlling variables, pro-
ceeding by analogy with physical systems
other than the fluvial system. These include
diffusivity-type equations (Scheidegger 1970,
p. 209-210) giving exponential profiles, ran-
dom walks (Leopold and Langbein 1962)
yielding power-function and logarithmic
profiles, and the balance of conditions of
minimum work and equal work distribution
(Langbein and Leopold 1964) producing
profiles bounded by power functions. Yang
(1971a) uses potential energy considerations
to derive graded profiles that deviate from all
three of the curve forms given above. These
heuristic approaches have the advantage of
appealing to general principles governing the
stream system, principles that the whole
group of stream variables considered individ-
ually by other workers must conform to.
Nonetheless, they stand or fall upon the re-
searcher’s wisdom to choose an analogy that
is correct and complete.

In short, research to derive mathematical
functions for graded river profiles has failed
to treat explicitly even the most minimal set
of controlling variables other than by entirely
empirical means. In various studies, how-
ever, mathematical curves of exponential,
logarithmic, and power function forms has
each been fit to actual river profiles with suc-
cess (Woodford 1951, Hack 1957, Butakov
1970, Shepherd 1985). Such variation in field
results ought to be explained by a com-
prehensive analysis of stream longitudinal
profile form.

A STEADY-STATE MODEL

A mathematical model describing un-
steady, nonuniform flow through an erodable
channel can be written in terms of four
dependent variables (fig. 1), the cross-
sectionally averaged flow velocity, u; water
surface elevation above a datum, /; mean bed
surface elevation above a datum, b; and the
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Fic. 1.—Definitions of dependent variables in
the model. Both bed surface elevation b and fiow
velocity u are cross-sectionally averaged. The con-
stant k., representing bank elevation, is factored
out in production of the steady-state model.

channel width, W. Each of these variables is
a function of two independent variables: dis-
tance downstream, x, and time, ¢. Equations
comprising the model are the following:

— conservation of momentum for clear water

ouW(h — b)] + W — b)]
ot o0x 6}

+ gWh — b)% = — Weululn?(h — b)~%

— continuity of water

AW — b)] | sluW(h — b)]

=0; (2

FY o o (2
— continuity of sediment

~—a [W(hc - b)] + aQst - Q:i (3)

ot ox

where g is the acceleration of gravity, n is
Manning’s roughness coefficient, Q; is lateral

inflow of water per unit channel length, Q; is
lateral inflow of sediment in volume per unit
length, « is one minus the porosity of channel
sediment, &, is a constant bank elevation, and
Q.. is bed material transport in volume per
unit time, a function of hydraulic conditions
and sediment characteristics.

Equation (1) is employed with the assump-
tion that suspended sediment loads will not
significantly alter the effective fluid density.
Other approximations are ones common in
the literature of open-channel flow for natural
channels with simple cross sections: assump-
tion of hydrostatic pressure in the fluid, ne-
glect of the momentum coefficient, and con-
sideration of a hydraulically wide channel
with width-depth ratio greater than 10. Metric
units are assumed in writing the flow resis-
tance term found on the right.

If no information about stream modi-
fication through time is desired, but only the
graded profile and associated flow geometry
data, the equation set can be greatly simpli-
fied. In graded time, the equilibrium profile is
unchanging and the hydraulics are those of
steady, nonuniform flow. All time derivatives
in the above equations drop out, leaving the
set of ordinary differential equations:

di*Wh — b} dh
—_ 2 + gW(h - b)—
dx dx @
= —Wgululn®(h — b)~"%
duWh = B _
— O; )
aQs _
= Osi )

With downstream flow taken to be in the
positive x direction, equations (4) and (5)
combine to yield:

lduz dh___ 2.2 _ -4

1 e - e D)
-4 __o _(7)
W — b) ™'

The last term on the right of equation (7)
represents the inertial effects of lateral in-
flows, assumed to be entering the channel at
right angles, reducing stream velocity. With
lesser angles of inflow this effect would be



18 R. S. SNOW AND R. L. SLINGERLAND

reduced. In the applications at hand the rela-
tive numerical value of this term is negligible,
and it is dropped from consideration. The to-
tal energy slope is defined (Henderson 1966):

_ _d W2
S, = 'd_x(hJ’E) ®)

and is substituted into (7), yielding:
S = uPn*(h — b)™% ©)

which is Manning’s Equation for gradually
varied flows:

u= —rl?(h — bys, (10)

If an external accounting is invoked to sum
the effects of sediment inflows, equation (6)
integrates to:

Qs = Qs Q 1)‘

where Q; is the sum of inflows increasing
along the channel length and Q, is replaced
by an appropriate sediment transport rela-
tion. If discharge is also externally inte-
grated, equation (5) gives the discharge for-
mula:

Q = Wu(h — b) (12)

The familiar equations (10), (11), and (12)
relate energy slope and the four dependent
variables to externally specified, controlling
values of discharge, sediment discharge, and,
via the transport relation, sediment charac-
teristics. Because channel width is to be
taken as a function of discharge (Leopold and
Maddock 1953), width is here treated as inde-
pendent. Although relationships between
hydraulic roughness and other individual
stream variables are well known, no gener-
ally recognized synthesis of these exists.
Leopold and Maddock (1953) provide evi-
dence that Manning’s »n typically shows little
systematic variation downstream, and it will
be taken as an externally imposed constant in
this study.

Substituting D (mean depth) for (r — b),
we have a set of three equations with three
unknowns. Hydraulic variables written into
various sediment transport equations are u,

D, shear stress 7, dimensionless shear stress
0, shear velocity U+, and stream power ().
With equations (10) and (12), all of these may
be written in terms of energy slope and exter-
nally specified variables:

0.4
u= n'°'6(%) 503 13)
0.6

D= (Q—W’,’) 5503 314

0.6
v = eeDS = oe(22) 507 a9

_ T -1 On\*® co7
= =T " Al ©

(16)

0.3
Un = (%>lfz _ go.s(Q_u'll) S0 (17)
Q = pgQs. (18)

where p is fluid density, s is specific gravity of
sediment, and d is sediment diameter. These
relations may be substituted into the sedi-
ment transport equation of choice to obtain
an equation relating the energy slope to
specified sediment discharge and other inde-
pendent variables. For most modern trans-
port relations this requires an iterative solu-
tion, with slope values being obtained for
discrete points along the stream as in the
similarly-conceived step techniques for back-
water calculation in hydraulic engineering.

The algorithm for calculation of a graded
profile begins with a sweep from upstream to
downstream points, with specified variables
and energy slope being calculated for each
successive data point. Solution for energy
slope is by Newton iteration, using the slope
at the immediately upstream point as an ini-
tial guess. A water surface level is specified at
the downstream end, and with mean velocity
calculated by equation (13), the downstream
elevation of the total energy line, H, is cal-
culated.

u2
H=h+— (19)
2

Averaged energy slope is then projected up-
stream from point to point with calculated
values of velocity and depth allowing solution
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for water and bed surface elevations. This al-
gorithm has been coded into the FORTRAN
program GRADE.

The model equations do not account for
differential transport of a distribution of parti-
cle sizes at any one point along the modeled
stream and therefore do not allow for selec-
tive longitudinal sorting of bed material.
Rather, a downstream change in mean or rep-
resentative grain size is taken as an indepen-
dently imposed condition.

GRADE allows calculation of ideal,
graded, profile curves conditioned by a vari-
ety of controlling variables and particular
sediment transport relations. The model is
consistent with general physical laws of con-
servation of mass and momentum. While not
all degrees of freedom of the river system are
allowed to come into play, it improves on
previous rational models in that downstream
variations in discharge, sediment caliber,
sediment discharge, and channel form are in-
cluded as factors controlling the form of the
graded profile.

CONTROLLING DATA VALUES

A numerical solution method such as that
employed in this model cannot provide a gen-
eral equation describing graded river profiles.
In response to specific values of the control-
ling variables, it can provide specific values
of stream gradient that can be assembled into
a profile. The exploration of the model must
proceed by a series of ‘‘numerical experi-
ments.”’ In this initial study it is important to
choose specific controlling variable values,
and ranges of values, which will be near those
actually found in natural streams and be ap-
propriate to the assumptions involved in the
model. Later analysis can show how sensi-
tive the general results are to the specific
values chosen.

Mathematical expressions are necessary as
well to describe downstream changes in
values of the externally specified, controlling
variables such as discharge and sediment
caliber. The set of such expressions as-
sembled in this section represents a consen-
sus of the literature; where a range of opin-
jons exist regarding a particular variable’s
downstream change, that range is repre-
sented by inclusion of more than one mathe-
matical expression.

Basin Area and Channel Length.—Hack

' (1957) observes that for a number of drainage

basins in the northeastern United States the
relationship between mainstream length (L)
and drainage area (A) can be expressed by
the proportionality:

L o A% (20)

A similar relation between stream lengths and
areas can be derived by example calculations
from Horton's (1945) laws of stream lengths
and drainage areas. Using typical values for
the length ratio and area ratio (Scheidegger
1970, p. 147), a set of lengths and areas for
streams of different orders can be obtained,
and plotted on double-log paper. The resuit-
ing curve rapidly converges to a line with
slope of about 0.6. Subsequent work (Gray
1961; Leopold et al. 1964; Mueller 1973), in-
cluding data from a variety of climates, sup-
ports Hack’s conclusion for basin areas up to
about 10,000 km? but indicates that for
greater basin areas the exponent gradually is
reduced to 0.5. Shreve (1974) applies topolog-
ical methods to produce a curve analog to
these results, but the curve is not expressed
by a simple mathematical function.

It seems most appropriate for this study to
treat streams with drainage areas for which
the length-area relation is best specified,
those for which equation (20) applies. A
stream 100 km in length, which by Hack’s
original data corresponds to a basin area of
about 1500 km?, is well within that range. Be-
cause in the present analysis the upstream
end is defined as a point where water and
sediment discharges are zero, and because it
is inappropriate to expect first-order stream
segments to abide by many of the generaliza-
tions applied here, only the 90 km segment
extending from 10 km to 100 km downstream
will be mathematically modeled and ana-
lyzed.

Discharge.—Empirical relations between
discharge and drainage area are widely re-
ported as simple power functions. The pres-
ent analysis does not treat arid region
streams, where discharge may decrease in
the downstream direction and where a con-
ceptual link between discharge and drainage
area is suspect. Hack (1957) compares aver-
age discharge to drainage area for various
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points in the Potomac River basin, deriving
the simple relation:

Q« Al0 Q@

However, higher discharges occurring less
frequently typically do not increase down-
stream in direct proportion to increasing
drainage area. For example, Aron and Miller
(1978) report the following average relation
between annual maximum flood peak and
drainage area for approximately 50 streams in
Pennsylvania and New Jersey:

Q o« A0.7 (22)

Strahler (1964, p. 50) indicates that for vari-
ous locations and discharge frequencies of in-
terest, the exponent generally falls in the
range 0.5 to 1.0.

We will generally take the view here sup-
ported at length by Wolman and Miller (1960)
and widely held today (Richards 1982), that
the ‘‘channel-forming discharge’ is one well
above average flow but still exceeded a num-
ber of times in a decade, roughly corre-
sponding to bankfull flow. However, with
geographic variation in the area-discharge ex-
ponent for flows of that range, it is reasonable
to adopt two different values, those shown in
equations (21) and (22), bracketing the range
and aliowing for variation of empirical re-
sults.

In order to express discharge as a function
of stream length, equation (20) is inverted,
replacing L with x,

A o x!7 23)

and combined with (21) and (22) to give re-
spectively, in non-dimensionalized form,

o) e
o = (=) @)

where x,,,,, is the full length of the stream, 100
km here, and Q.. is the discharge at the
downstream end.

The specific value of discharge used here
must be chosen from a great range of pos-

TABLE 1

RaTIOS OF FLOWS NEAR BANKFULL TO MEAN
ANNUAL DISCHARGE FOR RIVER LOCATIONS IN THE
East-CeENTRAL U.S.

Drainage
Area Discharge
River Location (km?) Ratio
Wabash R., New Cory-

don, Ind. 670 6
Eel R., North Man-

chester, Ind. 1080 6
Wildcat Creek,

Owasco, Ind. 1010 9
Fall Creek, Millersville,

Ind. 810 13
Driftwood Ck., Edin-

burg, Ind. 2730 9
Bogue Chitto, Tyler-

town, Miss. 1300 8
Allegheny R., Eldred,

Pa. 1420 6
Licking R., Farmers,

Ky. 2150 9
Red R., Clay City, Ky. 940 16
LaCrosse R., West

Salem, Wis. 1030 7
Trempeleau R., Dodge,

Wis. 1660 8
Buffalo R., Tell, Wis. 1050 10
Kickapoo R., LaFarge,

Wis. 690 17
Pecatonica R., Darling-

ton, Wis. 710 24
Grant R., Burton, Wis. 690 27

Sources.—Data from Leopold et al. 1964, table 7-13, Carlston
1965, table 1.

sibilities. A runoff rate of 20 cm per unit area
per year, typifying less humid areas of the
eastern U.S., would yield a mean annual dis-
charge of about 10 m%/s from a basin of 1500
km?. The ratio of discharge near bankfull to
mean annual discharge is not constant from
site to site, but calculations from data given
by Leopold et al. (1964) and Carlston (1965)
for several stream locations in the east-
central U.S. (table 1) indicate that the ratio of
10 is well within the range. So the outflow
from the modeled basin is set at 100 m*/s. A
semiarid region stream would have consider-
ably lower mean annual discharge but also
might be expected to have less frequent,
more extreme floods dominating channel
form. Though this argument, and its inverse
for more humid climates, is only qualitative,
it does suggest the model results may be ap-
plicable to streams outside the narrow
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Fic. 2.—Graphic representation of data sum-
mary given by Gottschalk (1964) for sediment de-
livery by drainage basins in four size ranges. Origi-
nal sediment discharge data, given per unit area,
has been multiplied by a ‘“‘median’’ drainage area
for each range, taken to be a value within the range
that is one-half log cycle from the range end points.
The trend of these values suggests that sediment
discharge is approximately proportional to the
three-fourths power of drainage area.

climatic range implied by the numbers used
above.

Sediment Discharge.—The relation of sed-
iment discharge to drainage area is also typi-
cally expressed as a simple power function,

Qs x A™ (26)

with various researchers giving values for the
exponent m that vary from 0.6 to 1.1
(Gottschalk 1964). Gottschalk’s own compi-
lation of average sediment production rates
for order-of-magnitude ranges of basin area,
involving 1100 basins in the U.S., plots on
double-logarithmic paper to give an exponent
of approximately 0.75 (fig. 2). Schumm (1963)
supports an exponent value of 0.85 for the
relation, based mainly on data from the west-
ern U.S. Again it is reasonable to represent
the range of opinion by employing two values
for the exponent, 1.0 and 0.7. Combined with
the length-area relation, these yield equa-
tions, parallel in form to those for discharge,

-z @
L-(2) e

with Q. representing the sediment discharge
at the downstream end.

Data such as Gottschalk’s, with sediment
production expressed per unit area, are com-
monly employed to support a belief that the
ratio of sediment discharge to water dis-
charge decreases in the downstream direc-
tion. Comparison of equations (24) and (25)
for water discharge to those above for sedi-
ment indicates such a belief is not necessarily
true. The pairs of equations for water and
sediment discharge were developed indepen-
dently, and this study will include numerical
experiments based on all four possible combi-
nations: one in which the ratio decreases
significantly downstream, two in which the
ratio remains constant, and one in which the
relative sediment load significantly increases
downstream. Although the last of these is
difficult to judge for a whole river length, the
results may be instructive for interpretation
of individual river segments.

Data relating sediment discharge during
bankfull flow to mean sediment discharge are
not widely available. Nixon (1959) estimates
from British rivers that bankfull discharge is
equalled or exceeded 0.6% of the time, and
Wolman and Miller (1960, p. 59) give plots of
cumulative percentage of total sediment load
versus percentage of time corresponding
flows are equalled or exceeded for four river
locations in the western U.S. From these we
can derive percentage of total sediment load
carried by flows equalled or exceeded 1% of
the time but less than flows exceeded 0.3% of
the time, giving examples of the desired ratio
(table 2). Interpolating a similar plot for Bran-
dywine Creek in Delaware from two data
points that Wolman and Miller supply, we de-
rive a ratio similar to the others. Based on
these limited results, for this work sediment
discharge is set at 20 times the mean sediment
discharge. Assuming production of 100%
solid material equivalent to the fairly low de-
nudation rate of 5 cm/1000 yrs (Bloom 1978,
p. 284-286), a 1500 km? basin yields a mean
sediment outflow of approximately 0.0023
m®/s. So ‘‘bankfull” sediment discharge at
the downstream end is set at 0.045 m>/s.

Sediment Transport Functions.—It is our
intention to insert into the model sediment
transport equations which have strong ra-
tional backing, consistent with the present-
day geomorphological emphasis on control of
sediment movement by stream power (Yang
1971b; Bull 1979), but which also have been
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TABLE 2

RATIOS OF PERCENTAGE OF SEDIMENT TRANSPORT ACCOMPLISHED TO PERCENTAGE OF TIME FOR FLOWS NEAR
THE DiSCHARGE EQUALLED OR EXCEEDED 0.6% oF THE TIME, FIVE U.S. STREAMS

% of total load Ratio:

carried within % of load to
River Location 0.7% of the time % time
Rio Puerco at Rio Puerco, N.M. 29 41
Cheyenne R. near Hot Springs, S.D. 26 37
Colorado R. at Grand Canyon, Ariz. 9 13
Niobrara R. near Cody, Nebr. 5 7
Brandywine Ck. at Wilmington, Del.2 13 19

Source.—Wolman and Miller 1960, fig. 2.
2 Relation interpolated from two data points.

calibrated with empirical data. Particular
equations are appropriate only to particular
ranges of sediment size. Two equations, one
appropriate to sand sizes and one to fine
gravel, serve in separate model runs in this
analysis.

Yang (1973, eqn. 26) presents a relation for
total load, based on the concept of unit
stream power, verified and calibrated using a
massive amount of flume data and lesser
amount of field data, with sediment sizes
ranging from 0.2 to 2 mm. The accuracy of
this equation compared to other commonly
applied relations has been verified for a vari-
ety of independent data sets (Yang and
Molinas 1982; Task Committee 1982; Borah
el al. 1982). The threshold for sediment trans-
port is expressed by a critical velocity, U,,
(Yang 1973, eqns. 18 and 19). The sediment
transport calculation also requires estimation
of particle settling velocities from sieve diam-
eters, provided in this study by a corrected
empirical equation (Baba and Komar 1981,
eqns. 2 and 5).

In the remaining numerical experiments
involving fine gravel sizes, the Engelund bed-
load equation (Engelund and Fredsge 1976,
eqn. 13) is applied, using the Shields curve
(Simons and Senturk 1976, p. 410) to estimate
6., the critical dimensionless shear stress for
sediment motion. Multiple shear stress terms
combine in the equation to make transport
proportional to stream power, and the equa-
tion has been calibrated with flume data, par-
ticle sizes ranging from 1 to 8 mm.

Sediment Caliber.—There are two general
approaches to be taken concerning change of
sediment sizes in the downstream direction.
Data sets such as those given by Hack (1957)

and Brush (1961) include examples of drain-
age basins with trends of sediment size re-
maining constant, increasing, and decreasing
downstream over tens of kilometers, typi-
cally with a large amount of scatter in the
data points. Although much of the variability
can be explained in terms of geologic con-
trols, one is nevertheless left feeling that,
when attempting to model generalized graded
river profiles, one should impose no down-
stream change in caliber at all, because there
is no clear, consistent trend to follow.
However, many workers (Sternberg 1875;
Shulits 1941; Pettijohn 1957; Scheidegger
1970; Tanner 1971) support a systematic
caliber change downstream of the form

d _ -a

where d, is sediment diameter at a specified
upstream point (x = 0) and g is a number of
units inverse to the units of x (e.g., km™!),
considered as a diminution coefficient,
where the diminution may be due to wear
and/or sorting. Here we take the ‘‘exponen-
tial law of gradation’’ (Scheidegger 1970) as
an empirical observation with no implication
of specific cause.

Representative values for the coefficient a,
collected from a variety of sources, appear in
table 3. Yatsu (1955) reports a discontinuity
in the relation for Japanese rivers as multi-
grain igneous pebbles break down to individ-
ual sand grains, with average coefficient
values for sands below the discontinuity be-
ing lower than for the gravels. It seems best
to reflect this by adopting two different repre-
sentative coefficients: for numerical experi-
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TABLE 3
GraIN S1zE REDUCTION COEFFICIENTS FOR VARIOUS

STREAMS

Grain Size Coefficient

Locality Range (mm) a4, (km™")
Rhine River? 150-100 .0032
7 Japanese rivers 100-20 .043%
River Mur 70-35 .0064
3 English rivers 70-15 .053%
River Fowley, U.K. 65-35 .028
Rapid Creek, S.D. 24-6 .029
5 Japanese rivers 2-4 .023Y
Mississippi River .6-.2 .0008

Sources.— Yatsu 1955; Pettijohn 1957; Knighton 1980; Richards
1982.

2 Largest cobbles only; all other values derived for mean grain
sizes.

b Mean value of several coefficients.

ments involving downstream change in fine
gravel sizes a is given the value 0.02, and for
experiments involving downstream reduction
of sands a is set at 0.003.

The specific ranges of grain size chosen for
the numerical experiments should be close to
the size ranges for which the equations were
calibrated. A d, value of 15 mm, chosen for
the gravel model runs, yields sediment sizes
reducing to 2 mm at the downstream end. A
d, of 0.4 mm for the sand-range runs yields
sizes reducing to 0.3 mm over the 100 km.
Runs with no spatial variation in caliber for
gravel and sand ranges are given constant
sediment sizes of 6 mm and 0.4 mm.

Channel Width.—Spatial change in chan-
nel width with spatial increase in discharge
is given by hydraulic geometry relations
(Leopold and Maddock 1953) and can be ex-
pressed in the following form:

Wv:a, - ( anx )Z G0

where W, represents width at the down-
stream end. Leopold and Maddock give the
exponent Z an average value of 0.5 for mean
annual discharges. Exponents derived for
humid-region streams at bankfull discharge
are somewhat below this value (Wolman
1955; Carlston 1965). Width-discharge rela-
tions for mean annual discharges and two-
year floods in the Missouri River basin
(Osterkamp and Hedman 1982) indicate
exponent values closer to 0.75 for sand and

gravel-bed streams, with little systematic
variation in the values due to sediment size.
The value 0.5 is sufficient as a general expo-
nent for this study.

With discharge at the downstream end 100
m’/s, channel width at that point is set at 50
m, a value biased toward humid-region, sin-
gle-channel streams. For the numerical ex-
periments described in the following section,
this gives a width-depth ratio of about 35 at
the most downstream piont.

Miscellaneous Constants.—As indicated
in the section on model development, Man-
ning’s roughness coefficient has been shown
empirically to change little on average in the
downstream direction. This study incorpo-
rates a constant value of 0.03, representative
of a fairly clear, natural channel.

Specific gravity of sediment is taken to be
2.65, equal to that of quartz. Calculations
pertaining to both Yang and Engelund trans-
port functions require values of fluid viscos-
ity, which are primarily affected by tempera-
ture. Taking temperature as 15°C, kinematic
viscosity is 1.15 x 10~° m?s, and dynamic
viscosity is 0.01139 poise. The choice of
values for each of these variables must be
regarded as potentially influencing the form
of derived, graded profiles. This possibility
will be addressed by sensitivity analysis in a
later section.

GENERAL MODEL RUNS

In collecting a set of controlling variable
values to allow calculation of idealized,
graded river profiles, we have adopted two
ways for discharge to vary downstream, two
ways to vary downstream sediment dis-
charge, two ranges of sediment size, and two
general approaches to spatial changes in sedi-
ment size. Sixteen numerical experiments us-
ing GRADE have been run, treating all pos-
sible combinations of these alternatives.
Longitudinal profiles, controlling variable
functions, and identification numbers for
these runs are shown schematically in figure
3. The profiles are drawn from computed bed
surface elevations and are made ‘‘dimen-
sionless,”” utilizing fractions of maximum
profile elevations and lengths. Actual mean
slope values for these profiles range from
0.001 to 0.002, and the range of Froude num-
bers for all locations in the runs is 0.32-0.72,
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sand | gravel | sand | gravel

d<62°% d2692* | d=.4mm | d=6mm
Qeax'7 1 2 3 4
Qs‘x1.2 [\ \ \
Qax'7 5 6 7 8
Qex'’ \ \ \ \\
Qax'? 9 10 11 12
Qax'2 13 14 18 16

Fi1G. 3.—Stream bed profile forms calculated in
general model runs 1-16, with imposed down-
stream changes in flow discharge Q, sediment dis-
charge @, and sediment diameter d applicable to
each of the runs shown on vertical and horizontal
axes of the matrix. The variable x is distance down-
stream, for change in d specified to be in units of
kilometers. Profiles have each been vertically exag-
gerated to a square format to allow best compari-
son of shape.

with values for the majority of the profiles not
exceeding 0.5.

The results indicate that profile concavity
is significantly affected by all three of the ma-
jor controlling variables. The highest degree
of concavity is produced in cases with a
strong alongstream decrease in sediment
caliber, runs 2, 6, and 10. Concavity is en-
hanced by a strong change in discharge
downstream and weak change in sediment
load. In runs 13-16, where sediment load in-
creases downstream relative to discharge,
profiles in gravel have reduced concavity and
profiles in sand become convex. We have cal-
culated values for profile concavity (tabie 4)
as ratios of areas measured on the profile
graphs:

Ay

= — 31
Ca ym @31

where A, is the numerically integrated area
that lies between the profile curve and a
straight line connecting the profile endpoints
and A, is the triangular area below that
straight line and above a horizontal axis con-
necting with the profile’s downstream end-

point. If the profile curve is convex, then A,
is taken as a negative value. This method al-
lows concavity to be derived consistently, re-
gardless of curve form.

Before testing the fit of basic exponential,
logarithmic, and power functions to these
ideal profiles, one must estimate the degree of
error produced in the profile calculations due
to the use of numerical approximation tech-
niques. There are two potential sources of
such error. The first is the use of a numerical
method to match an appropriate energy slope
to the imposed sediment discharge. The con-
vergence criterion for this process requires
that the sediment load be calculated correctly
to more than 10 significant digits, discounting
this as a source of any discernible error.

The second potential source of error is in
the use of a finite set of points to represent
the river profile, with slopes averaged be-
tween these points used to project the profile
upstream in steps. Re-computing run 1 sev-
eral times using different numbers of data
points (fig. 4) gives evidence that use of 91
data points, 1/km of modeled stream length,
is a reasonable balance between accuracy
and computation time costs. With a 901-point
run used as basis for comparison, the 91-
point run generates 2.5 cm of error at the up-
stream end. The upstream accumulation of
this error is not in proportion to the profile’s
increase in elevation and, therefore, pro-
duces a minor change in profile form. The
general degree of error along the profile can
be expressed by a standard deviation of resid-

uals
2 0.5
7= [ IE\}( A—h)l ] 62

where Ah’s are elevation error values along
the profile, and N is the number of such
values. The standard deviation is conve-
niently expressed in the same units as the
variable being tested for error, and the stan-
dard deviation derived for the 91-point run is
somewhat less than 1 cm.

MODELED PROFILES COMPARED
TO MATHEMATICAL FUNCTIONS

In order to test how well the computed

profiles are fit by simple exponential,
logarithmic, and power functions, we have
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TABLE 4

STANDARD DEVIATIONS FOR REGRESSION CURVES BASED ON THREE SIMPLE FUNCTIONS, PROFILES RESULTING
FROM GENERAL MODEL RUNS

Standard Deviations, ¢ (m)

Sediment Profile for fit of simple functions
Run Caliber (mm) Concavity
No. (x in km) Ca Exponential Power Log.
(Q &« X1'7, Q «© x1.2)

1 “d, = 4, dox e 00 233 1.52 03342 493

2 d,=15,d« e~ 0% 340 2.40 .416 . 3722

3 d = .4 214 1.60 .0002 .681

4 d =60 .187 1.28 .0073®° .664
(Q x x1.7’ Q: « x1.7)

5 d, = .4,dxe™003% 122 544 02752 .340

6 d,=15,d« e~ 0> 292 2.00 3197 517

7 d = 4 .102 579 .0023° .428

8 d =6.0 107 .736 05272 .587
(Q = x'2, @, « x'?)

9 d, = .4,dx e 00 .091 34 0245 .238
10 d: =15,dxe™ 9% .236 1.36 .273“b 491
11 d = 4 072 370 .0012! .302
12 d =60 .069 .408 10220 .352
(Q = x'2, Q; x x'7)

13 d, = 4,dxe 003 —.009 .0803 03713 .186
14 d,=15,d«x e % 196 1.26 3322 762
15 d = 4 —.029 .0698 .0005° .0791
16 d =6.0 .002 .340 2252 .284

2 Best fit to profile, of three tested functions.

‘“Exact” fit to profile, with error less than that potentially imposed by model numerical solution method.

performed regressions using the functions as
regression models:

exponential function

y = B1e’ + B3 (33)
power function
y = Bilx + B + B4 (34)
logarithmic function
y = Biloglx + B2) + B3 (35)

where y is elevation and B’s are regression
coefficients independently determined for
each function and each profile. In some cases
previous workers have applied these equa-
tions with fewer coefficients, in effect requir-
ing that curve origins coincide with either
their measurements’ zero-elevation datum,
or the horizontal location chosen as the
stream’s upstream end, or both. Although
the nature of the present study allows the
stream’s upstream end to be specified with

some assurance, regressions here are allowed
to develop curves of the various forms with
any origins that will give best fit to the data.

The best fit is defined as that which mini-
mizes the sum of squares of residuals, which
also gives a minimum standard deviation of
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Fic. 4.—Relation of calculated river profile ele-
vation at upstream end (x = 10 km) to number of
points of calculation used along the profile for run 1
of the model. The number used in this study, 91 (*,
on diagram), gives an elevation value 2.5 cm higher
than that derived using 10 times as many data
points.
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Fi6. 5.—Best-fit regression curves for exponential, power function, and logarithmic statistical models
applied to profile data generated in run 1. The profile data, included in each case for comparison, show that
all three regression models can provide close, though not exact, fits.

residuals (i.e., standard error of estimate).
Standard deviation values, expressing lack of
fit between simple curve analogs and the 16
computed profiles, are listed in table 4.
Where profile curves are convex (C4 < 0),
the logarithmic function standard deviations
shown are the results of a modified regression
model, with — x substituted for x in equation
(35).

Perhaps the most notable aspect of these
results is that the degree of fit is generally
high. For profiles ranging approximately 100-
200 m in relief, even a systematic error of 1 or
2 m might well be considered acceptable, and
consistent deviations measured in centime-
ters would be entirely masked in field data
(fig. 5). If profiles such as these were encoun-
tered in the field, any of the three preferred
profile equations, considered individually,
could be taken to provide a reasonable analog
to profile form. Yet when relative values of
standard deviation are compared, the power
function is almost universally to be preferred.
In cases with little or no change in sediment
caliber downstream, other than the practi-
cally straight profiles of runs 13 and 16, the
power function yields errors at least an order
of magnitude less than do the other functions.
In those cases where sand is a constant size
downstream, the error is less than potential
errors of the numerical solution method, a
condition we will refer to as an exact fit.
Where gravels strongly decrease in size
downstream, the errors associated with the
power function increase, presumably due to
the influence of the exponential form of
caliber reduction. In these cases it is the
logarithmic function that rivals and in one
case exceeds the power function in accuracy.

The fit provided by the exponential function
remains relatively noor. Results are no differ-
ent when water surface data are substituted
for bed surface data in the regressions.

Three caliber-related factors may control
how closely particular computed profiles ap-
proximate power functions. Change of grain
size, noted above, is one factor. There is also
a difference associated with general grain
size, sands allowing a better fit than gravels.
But the difference in grain size is also associ-
ated with a difference in the equations used to
model sediment transport. Thus the question
arises: how much of the difference in mod-
eled profiles results from differences in theo-
ries of sediment transport, and how much
from some other effect related to grain size
but independent of equation used? One ap-
proach to this question is to recompute runs
4, 8, and 12 using the Yang equation instead
of the Engelund equation. The resulting
profiles cannot be considered appropriate to
streams in nature, but unrealistic runs such as
these may nevertheless aid understanding of
the mathematical model and its limitations.
Use of the Yang equation to model gravel
transport in these runs yields profiles fit by
power functions with standard deviations
very close to those associated with the
Engelund equation. This suggests that it is
the difference in sediment size rather than
the choice of transport equation that af-
fects the profile approximation to a simple
power function.

ADDITIONAL, SIMPLIFIED RUNS

The results given in the previous section
have been analyzed primarily by assigning
particular variations in profile form to the in-
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sand | gravel

only d 17 18
varies
only Q 19 20
varies

22
only Q, 21
varies

Fic. 6.—Stream bed profile forms calculated in
runs 17-22, where in each case only one control-
ling variable value is allowed to vary normally in
the downstream direction. Other variables are
maintained at constant, close-to-average values.
The downstream variations in flow discharge Q,
sediment discharge Q,, and sediment diameter d
used here are the same as those applied simulta-
neously in general runs 9 and 10.

fluence of particular controlling variables and
their variations downstream. Having con-
structed a rational model allowing a number
of variables to influence graded profile form,
it is natural to wish to isolate their effects.
This is done directly via a series of additional
numerical experiments.

Effects of Major Variables.—The in-
fluence of an individual variable on profile
form is examined by holding all other vari-
ables constant. We have run a set of six ex-
periments including cases of isolated down-
stream change in discharge, sediment
discharge, and sediment caliber, treating
each case for both sand and gravel sizes.
When water discharge or sediment discharge
is the variable allowed to change in the down-
stream direction, its increase is set propor-
tional to x'2; otherwise these controls are
given constant values respectively of 30 and
0.0136 m®/s. The constant and varying values
for sediment size are those employed previ-
ously. Profiles for these six runs, 17-22, ap-
pear in figure 6.

Runs 17 and 18 make apparent the in-
fluence on profile form of the two exponents,
both within reported ranges, adopted to rep-
resent sediment caliber diminution down-
stream. Regression results (table 5) show a

greater difference, with the practically
straight profile in sand (run 17) being almost
exactly fit by an exponential function,
whereas the profile in gravel is not closely fit
by any function, though the logarithmic func-
tion affords a slightly beiter fit than the other
two. Even sole influence by exponentially de-
creasing sediment size does not develop a
distinctively exponential profile. Runs with
discharge and sediment discharge individu-
ally controlling form yield profiles that are
essentially power functions, following the
form of equations describing downstream
variation in those variables. The strongly
convex profiles produced in runs 21 and 22
supplement the evidence in the general runs
1-16 that downstream variation in sediment
discharge relative to flow discharge has po-
tential to influence significantly profile form.

Transport-Threshold Profiles.—In runs ac-
complished to this point, profiles have been
modeled which can support a significant, im-
posed sediment discharge. Sediment caliber
has primarily come into play as a factor in-
fluencing the slopes required to provide this
capacity. Some workers (Holmes 1952; Yatsu
1955) imply competence to be the more im-
portant requirement influencing profile form.
We mathematically express competence in
the form of critical transport criteria such as
U, and 6., and must set sediment discharge
close to zero to allow the control of sediment
size on these factors to become a significant
control on profile form.

Ten additional numerical experiments (fig.
7) duplicate the conditions of all previously
described ones, with the exception that Q;,
set proportional to @, has a value at the
downstream end of 0.0004 m%/s. This gives a
sediment load about 1% of that in previous
runs. The numerical solution method does
not allow us to set Q, at zero. Regression
results on these profiles are given in table 5.
These profiles have significantly lower mean
slopes, ranging from 0.0001 to 0.0007, indi-
cating that general profile relief as well as
profile shape is significantly affected by vol-
ume of sediment load.

Regression results for runs with varying
discharge downstream and little or no spatial
change in caliber indicate transport-threshold
profiles exactly fit by power functions, as was
the case in runs 19 and 20 under conditions of
higher sediment discharge. So in the case of
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TABLE 5

STANDARD DEVIATIONS FOR REGRESSION CURVES BASED ON THREE SIMPLE FUNCTIONS, PROFILES RESULTING
FROM ADDITIONAL, SIMPLIFIED RUNS

Standard Deviations, o (m)

Profile for fit of simple functions

Run Sediment Concavity
No. Caliber (mm) Ca Exponential Power Log.
(O const., Q. const.)
17 d, = 4,dxe 03 .020 .01022 .0374 115
18 d =15,d e .189 .306 316 2312
(Q = x'2, Q, const.)
19 d = 4 344 1.82 .0097° 150
20 ' d =6.0 .295 1.48 .0159* 375
(Q const., Q; = x!'?)
21 d = 4 -.212 .580 .0097° 964
22 d =6.0 -.144 277 .0074° .481
(Q o« x1.7’ Q;_) 0
23 d, = .4, dxe 0% .186 .0728 .0002° .0470
24 d, = 15,d x e % .586 .670* 1.73 3.26
25 d = 4 .180 .0734 .0006° .0484
26 d =6.0 252 .485 .0041° .179
(Q xx'2, 0, 0)

d, = .4,dxe 0 .159 0527 .0001° .0373
28 d, =15,dx e~ .539 .382% 1.10 1.86
29 d = .4 .153 0532 .0006° .0386
30 d = 60 .180 274 .0015® 152
(Q const., O; —

d, = 4 d o« =003 010 .0007° .0011° .0220
32 d, =15,d = e % 422 .08942 .873 .861

: Best fit to profile, of three tested functions.

“Exact” fit to profile, with error less than that potentially imposed by model numerical solution method.

sole variation of water discharge down-
stream, the complex transport equations as
well as their complex transport-initiation
functions yield simple profiles of equilibrium
following the form of the discharge change.
Transport-threshold profiles developed with
caliber and discharge changing significantly
downstream (runs 24 and 28) do not distinc-
tively follow any simple function but are fit
most closely by the exponential form. Fi-
nally, runs with sole change in caliber down-
stream yield transport-threshold profiles fit
well by exponential curves, though not ex-
actly so in the case of strongest size varia-
tion. Although the fit is very precise in run 31,
its almost-straight profile does not recom-
mend it as a test case. Whether we consider
profiles developed under criteria of transport
inception or of significant sediment transport,
it appears that the assumption of a simple re-
lation between sediment caliber and channel
slope (Shulits 1941) is at best an approxima-
tion.

SENSITIVITY ANALYSIS

To explore this mathematical model we
have had to adopt specific, constant values.
for some variables potentially affecting
profile form, and specific ranges of value for
others. It is apparent that streams with vastly
different controls (including vastly larger
size, considering the change in the length-
area relationship) need to be investigated sep-
arately. But might seemingly insignificant
changes in the values of particular controls
produce significant modification of the pres-
ent results? To analyze sensitivity of results
to individual inputs, a typical model run is
recalculated many times with one control
value altered in each case, and the resulting
profiles are analyzed for changes in general
slope, concavity, and relative fit of the three
simple functions.

Run number 9 is well suited for application
of such a test; it is a moderate example of the
set of general runs in terms of concavity,
overall slope (0.0014), and relative fit by ex-
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23 24 25 26
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Q const. \ K

F16. 7.—Stream bed profile forms calculated for
transport-threshold conditions, model runs 23-32.
Imposed relation of flow discharge Q to distance
downstream x is shown on the vertical axis of the
matrix, and downstream variation of sediment di-
ameter d is given on the horizontal axis.

ponential, logarithmic, and power functions.
The profile is modeled using Yang’s transport
equation, which is supported by a larger data
base than Engelund’s equation.

Controls Taken as Constants.—This first
set of sensitivity analyses treat hydraulic
roughness, sediment density, water tempera-
ture, and the exponent Z relating channel
width to discharge, all factors taken as simple
constants in the present study. For each anal-
ysis, two parallel model runs employ values
of the investigated variable that not only
bracket the original value used in run 9, but
also encompass a large portion of the values
found in nature. In all cases but the last, over
this value range a power function best fits the
stream profile best fit by a power function, by
an order of magnitude better than other func-
tions tested.

Taking 0.02 and 0.04 as alternative values
of Manning’s # for hydraulic roughness does
not ailow for representation of some high-
resistance channels found in nature, but
those numbers do cover a significant range of
natural conditions. Variation over this range
of roughness produces significant change in
slope only, giving a total increase of 32% with
increasing value of n. Although profile relief
is affected, profile form remains constant. A
similar effect is seen when the changing vari-
able is sediment density. Over a specific grav-
ity range of 2.3 (gypsum) to 3.2 (olivine),
there is no significant alteration in profile
form, but only about 20% difference in gra-
dient, with higher slopes balancing higher

density. Considering values of mean water
temperature at high flow that fit in a range
from 5° to 25°C, we find an insignificant
change in slope at 2%, and a 6% decrease in
concavity with an increase in temperature.
Although water viscosity at 5°C is about 50%
greater than that at 25°C, the effect on profile
form cannot be considered more than a
curiosity.

The sensitivity test values of the width ex-
ponent Z are set at 0.3 and 0.7, but it may be
noted that there are cases (e.g., Osterkamp
and Hedman 1982) where this exponent ap-
proximates 1.0, making width directly pro-
portional to discharge. As Z increases from
0.3 to 0.7, overall slope decreases about 15%
and concavity decreases about 65%. With
W,ax held constant at the downstream end,
the exponent 0.7 amounts to a narrower
channel upstream than does the lower expo-
nent. Relatively then, both discharge per unit
width and sediment load per unit width are
increased upstream to an equivalent degree.
But the results indicate that added transport
capacity provided by increased Q/W more
than accounts for the increase in Q/W, allow-
ing somewhat lower slopes. Because this ef-
fect of added transport capacity relative to
runs with lower exponent values decreases
downstream, a less concave profile is devel-
oped.

For the range of width exponents given,
the calculated profiles are fit by power func-
tions with about one-tenth the error associ-
ated with the other functions. But the relative
advantage of the power function, indicated
by ratios of standard deviations of residuals,
is about cut in half over this range, with the
decrease in advantage following an increase
in exponent value. One can extrapolate to
understand this effect. As the exponent value
goes to one, then Q/W becomes a constant
value in the downstream direction, and if sed-
iment discharge is proportional to discharge,
then Q,/W is also constant downstream.
Cases satisfying these constraints have al-
ready been calculated in runs 17 and 18 (table
5), for which the power function approxima-
tion is not superior. High rates of width in-
crease with spatial increase in discharge will
diminish or eliminate the influences of dis-
charge and sediment discharge on profile
form. Although the mathematical experi-
ments in this study do not provide support for
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the idea of a distinctive, simple profile form
for stream reaches where sediment size varia-
tion is the only active control, the results do
imply cases, other than the commonly noted
constant-discharge streams, where such ex-
clusive control on profile form by sediment
factors may be in effect.

Main Control Variables.—Flow discharge,
sediment discharge, and sediment size are all
variables whose natural values span many or-
ders of magnitude, and no simple sensitivity
analysis addressing such ranges should be at-
tempted. However, some information may be
gained by this technique regarding model sen-
sitivity to the general values of these control-
ling variables, doubling and halving the
values of Qnax, Qsm»> and d, to allow for model
response over a four-fold range in each case.

Changes in overall gradient resulting from
isolated change in these three variables are
different in degree, with 114% slope change
accompanying four-fold change in discharge,
88% slope change resulting from an equiva-
lent change in sediment load, and 58% slope
change across a four-fold range in grain size.
The only significant change in profile concav-
ity is brought about by varying sediment size,
decreasing 14% over the range as general
grain size increases. The relative advantage
of the power function in matching the profile
form is maintained in these tests at about 10-
fold.

DYNAMIC MODELING OF APPROACH TO GRADE

To perform numerical experiments on
stream approach to grade, we must model
progressive changes in disequilibrium stream
profiles over time. This is done by solving the

_set of equations (1-3) in their full form, using
an implicit, time-weighted, finite-difference
method given by Fread (1978). The four-
point, central difference approximations used
in this method are replaced by six-point ap-
proximations in equation (3) to allow greater
flexibility in choice of sediment-related
boundary conditions (Snow 1983). To solve
the finite-difference forms of the equations, a
generalized Newton iteration procedure
{Amien and Fang 1970) is applied. This solu-
tion method has been demonstrated to pro-
vide economical solutions on computer for
modeling of river profile adjustments over
long time spans of interest to geomorpholo-
gists (Snow 1984).

With three equations insufficient to solve
for four dependent variables, channel width
is taken as an unchanging value through time.
This is in accord with the observation by
Wolman (1955) that aggrading and degrading
streams are indistinguishable on the basis of
hydraulic geometry from streams at grade..
An assumption implicit in this stream model
is the requirement that all channel slope ad-
justments be produced by erosion and depo-
sition while channel sinuosity remains con-
stant. If a model allowing stream segments to
expand or contract over time were to be de-
veloped, it would require a mathematical ex-
pression relating sinuosity changes to erosive
force, bank material, and other factors, and
such an expression is presently unavailable.
The stream is assumed to be eroding in allu-
vial fill, so that channel degradation is a mat-
ter of transport, not abrasion.

We have taken the set of external controls
appropriate to steady-state run number 1 as
input to the dynamic model, performing three
numerical experiments of profile approach to
grade from arbitrary, initial stream profiles
(fig. 8). The initial profile for run A is a
straight line, determining that in erosion to a
concave form the thickest column of sedi-
ment must be removed from the central re-
gion of the stream course. Run B begins with
a convex profile reminiscent of an uplifted
land surface. In this case, most of the sedi-
ment to be removed is in the lower reaches of
the stream. The initial profile for run C is sim-
ply the graded profile from run 1 with all
slopes increased by a factor of 1.5, giving a
profile equivalent in concavity to the profile
to be finally developed. The majority of sedi-
ment must be removed from the upstream
reaches. '

These model runs can only be taken as a
first approximation to actual histories of ma-
jor downcutting and aggradation in river val-
leys. The model does not include valley re-
sponse such as increased sediment inflow
resulting from downcutting. But our purpose
here is different from that; our interest is in
the characteristics of stream profiles as they
near the graded condition. The last few me-
ters of erosion are unlikely to provoke any
types of basin response that have not already
become prevailing conditions as results of
rapid, initial downcutting.

Times given for profile adjustment in these
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Fic. 8.—Initial, intermediate, and final longitudi-
nal profiles for three dynamic model runs of profile
approach to grade. Each space between profiles
represents 20 yrs of model time and an unknown,
larger number of years in real time. The initial
profile for run A is a straight line, that for run B is
convex, and that for run C has a concavity equal to
that of the final, graded profile. Signs of initial con-
ditions are rapidly obliterated, and intermediate
profiles quickly come to reflect the form of the
graded profile.

model runs are underestimated not only be-
cause removal of valley sediments outside
the channel is not accounted for, but also be-
cause the ‘‘channel-forming flow™’ given for
discharge far exceeds the sediment-transport
capacity of flows occurring most of the time.
The ““time to grade’’ of about 300 years given
here can only be taken as a very conservative
lower limit for relaxation times of real
streams with similar conditions. Because of
the need to use some sort of time notation in
discussing results, we will speak in terms of
“model years.”’

The diversity of initial profiles tests the de-
gree to which such initial characteristics are
retained in the profiles developing to grade.
Even with the extreme differences in re-
quired amounts and locations of erosion, the

experiments indicate that signs of the initial
conditions are quickly obliterated. With tens
of meters of erosion remaining to be accom-
plished, the intermediate profiles are very
similar in form to the final profile, and in all
three runs the subsequent profile lowering
proceeds in the same asymptotic manner.
The only difference noted between profile
forms for streams approaching grade and
those at grade is a slightly lower concavity for
profiles approaching grade, about 1% less at a
model time of 150 yrs. This difference is
useless for analysis of actual stream profiles,
but still ought to be explained. While a stream
erodes, an extra sediment discharge originat-
ing from the channel bed is added to the ex-
ternally imposed sediment load, and accumu-
lates downstream. As we have seen, a greater
downstream rate of increase in overall sedi-
ment load requires a less concave equilibrium
profile. Here we see a similar effect on the
profile approaching equilibrium. This effect
most distinctively shows in the evolution of
the stream profile in run C: the initial profile
is equal in concavity to the final profile, but
the intermediate profile at 20 model yrs is
about 10% less concave, and subsequent con-
cavity values increase again, asymptotically
approaching the equilibrium value.

CONCLUSIONS

Based on the results of these numerical ex-
periments in the calculation of ideal river
profile forms, we can suggest two general rea-
sons for the variety of types of mathematical
curves that fit equilibrium stream profiles.
First, if origin values are not specified, then
exponential, logarithmic, and power function
curves can all be fit quite closely to stream
profiles such as those modeled here. Percep-
tion of which curve form is the best analog to
particular profiles in the field is a function not
only of profile form but also of the set of
curve forms tested and the constraints placed
on each function by specifications of curve
origin.

Second, the set of profiles modeled shows
variation in relative advantage of different
curve types as profile analogs. Stream sys-
tems characterized primarily by downstream
increases in fluid and sediment discharge de-
velop profiles distinctively of power-function
form. If there is also a strong decrease in sed-
iment caliber downstream, then profile form
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is not matched well by any of the simple func-
tions, but a logarithmic curve gives the best
approximation. Profiles developed at low
rates of sediment transport with sediment
size decreasing downstream and other major
controls held constant most closely approach
pure exponential curves. If the increase of
width downstream is nearly proportional to
the increase in discharge, then the influence
of discharge variation on profile form is
negated, and sediment-related factors shape
the profile.

The model results relating to profile form
can be generalized over a wide range of
values for channel roughness, sediment den-
sity, and water temperature. Doubling or
halving the prevailing values of discharge,
sediment load, and sediment size significantly
affects slope ‘but does not produce major
changes in profile shape, though some de-
crease in concavity accompanies an increase
in general sediment size. There is reason to
believe that the model presented here cannot
adequately treat streams with much larger
drainage basins because the relation of main-
stream length to drainage area changes at
larger scales. The model is limited in applica-
bility to ranges of sediment caliber values ap-
propriate to the sediment transport equations
employed. In light of changes in calculated
profile form between sand and fine gravel

sizes, profiles developed under otherwise
similar conditions may show significant
changes not only in slope but in shape over
the full range of river bed material sizes.

Rivers eroding their channels and ap-
proaching to the graded state develop profiles
very similar to graded profiles quite early in
the time between initiation of erosion and at-
tainment of equilibrium. Conditions of grade
and approach to grade cannot be distin-
guished on the basis of profile form; other
stream characteristics must be examined. Al-
though streams of the type modeled here may
well have relaxation times measured in
thousands or tens of thousands of years and,
therefore, may be in a continual state of ad-
justment to long-term changes in superficial
conditions, the characteristics of profile form
that we have examined for the ideal graded
case are likely to remain in effect.
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