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ABSTRACT

Models of quantitative dynamic stratigraphy are usually nonlinear equations representing
forced, dissipative systems, and as such they are susceptible to arich mathematical behavior
only recently recognized. Even a simple nonlinear dynamical system such as the Lorenz
equations describing Rayleigh-Berard convection, used here as an example, contains
periodic, slightly aperiodic, and seemingly random solutions called chaotic, depending upon
the Rayleigh number. Systems of this type display a sensitive dependence upon initial
conditions making prediction in its present sense impossible. Some periodicities that arise are
likely to be explained by external causes when in fact, they are due to nonlinear coupling. In
a positive light, these nonlinear dynamics may explain some of the complexities in the
stratigraphic record.

INTRODUCTION

Over the last two decades a quiet revolution has occurred in the science and mathematics of
nonlinear dynamical systems. What was once a backwater topic of research, for the most part
ignored by physicists after Poincaré, now has its own journals, conferences, centers for
nonlinear studies, and even its own toys, such as Space Balls. The reasons are several-—the
diminishing returns of particle physics, advances in computers and numerical analysis, for
example—but two others seem especially noteworthy. first, we are now at the stage where
the interesting problems are the more difficult nonlinear ones. To practice reductionist
science with its linearized models is to throw out the baby with the bathwater. Thus an
alternative scientific approach, termed “analysis by synthesis” by Hut and Sussman (1987),
has arisen wherein one constructs and solves nonlinear mathematical models on the
computer. Of a set of models, the model configuration that best accounts for the observations
is assumed to be the correct one. This is the technique of quantitative dynamic stratigraphy
(QDS) as presented elsewhere in this volume. Second, as scientists in as diverse fields as
meteorology and population ecology began constructing nonlinear models, they discovered
arich mathematical behavior (see Crutchfield etal., 1986, and Stewart and Thompson, 1986,
for reviews, and Gleick, 1987, for a popular account). Even the simplest of deterministic
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equations generated periodic, slightly aperiodic, and random solutions, the latter being called
chaos. This rich behavior drew the interest of mathematicians, making the study of nonlinear
dynamical systems fashionable once again. The result has been a deeper understanding of
such enigmas as the transition to turbulence in fluids (Feigenbaum, 1980; Hofstadter, 1981).

There is a certain irony in the revolution however. The possibility of chaotic behavior
in even simple nonlinear deterministic systems makes analysis by synthesis all the more
difficult. Over a certainrange of initial conditions, the solutions may be well behaved, settling
down to a fixed point or simple orbit in the state space. In other, a priori unknowable ranges,
the solutions may be chaotic. And, in either case, small differences in the initial conditions
may produce great differences in the solutions, thus magnifying small errors in the initial
conditions. Prediction becomes impossible.

Two questions arise then—how do we recognize chaos, and are quantitative dynamic
stratigraphy models susceptible to it? If the answer to the latter is yes, an additional question
follows—what are the stratigraphic implications of a chaotic solution? The remainder of this
article addresses these questions, although no straightforward answers are presented. A
review of the Lorenz model of Rayleigh-Benard convection provides an analogue for
recognizing chaos and I will attempt to summarize the few known necessary conditions for
chaotic behavior of a system. Some comments on stratigraphic implications close the
discussion.

AN ExaMpPLE OF NONLINEAR BEHAVIOR AND CHAOS

Classical Rayleigh-Benard convection serves as an ideal example of nonlinear behavior,
because it is simple enough to allow for intuitive understanding and because it is quite well
studied. Rayleigh-Benard convection is one possible mode of fluid circulation deep within
sedimentary basins where it could contribute to the origin of diagenetic pressure seals of gas
TEServoirs.

When a fluid is heated uniformly from below and cooled uniformly from above, heat is
first transported vertically by conduction with no apparent fluid motion. After some time, and
for temperature differences above a critical minimum, cylindrical rolls develop, convecting
heat by fluid transport. As demonstrated in Shirer (1987), the smallest effective model of
these system states through time is the two-dimensional equation set of Lorenz (1963),

dx/dt* = -px + py
dy/dt* =-xz+1x -y

dz/dt* = xy - bz

where x is proportional to the intensity of convective motion, y is proportional to the
temperature difference between ascending and descending currents, z is proportional to the
distortion of the vertical temperature profile from linearity, and t* is dimensionless time. The
coefficientpisthe Prandtl number, taken as 10in the original calculations; r is the normalized
Rayleigh number (equal to 24.7 at the onset of steady convection), taken to be 28; and b is
aconstantequal to 8/3. For an initial condition, Lorenz chose (0,1,0), a slight departure from
the state of no convection. -
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Our intuition tells us that at this slightly supercritical normalized Rayleigh number, r,
fluid flow should commence att* >0 and evolve into a steady state convection. Lorenz found
otherwise. The temporal behavior of solutions to this small system of equations is compli-
cated for this and certain other r in the range 24.7 < r < 215. This is illustrated by plotting y,
the difference in fluid temperatures on the rising and falling limbs of a cell (Fig. 1). It grows
with time up to a t* of about 30 when warm fluid is at the top of the cell. Then y decreases
and by t* = 50 changes sign, signifying that the overly vigorous flow of the cell has caused
the warm fluid originally at the bottom of the cell at t* = 0 to continue over the top of the cell
and descend; likewise the cold fluid ascends. The resulting buoyant forces cause the motion
to cease and reverse direction at t* = 60. For 85 < t* < 1650 the fluid motion matches our
intuition in thatitis quasi-steady around one solution with a fixed mean value of y (also x and
z).Itoscillateshowever, and the oscillations increase in amplitude until t* = 1650 after which
the motion is quite irregular. The motion is sometimes clockwise and sometimes counter-
clockwise with no apparent long-term periodicity.
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Figure 1. Times series solution of the Lorenz convection model for p = 10, b= 8/3, and r = 28. Vari-
able y is proportional to the difference in fluid temperatures on the rising and falling limbs of the con-
vection cell and t* is dimensionless time. Att* = 1650 the motion becomes chaotic (modified from Nese,
1985).
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Is the motion chaotic? To answer this question, consider a more revealing graphical
representation—a plot of the solutions in their state space, an abstract construct whose
coordinates are the dependent variables of the system. A system that proceeds from some
initial condition to a steady state solution would be represented by a trajectory from an initial
point to a single steady state point. Because many systems end up at the same steady state
solution regardless of initial conditions, a steady state point is said to attract nearby
trajectories or orbits and is called an attractor. There may be many attractors in a state space,
each with its own basin of attraction. Other systems may not come to rest in the long term;
rather they may cycle periodically thorough a sequence of states in a periodic orbit. The
associated attractors are called limit cycles (see Crutchfield et al., 1986; May, 1976; and
Stewart and Thompson, 1986).

The graph of the Lorenz equations in state space (Fig. 2) was constructed by solving the
equations at timesteps so infinitesimal as to produce a line. The trajectory loops around one
stationary solution and then another, returning near to itself but never duplicating an
individual orbit. Solutions such as these are called chaotic. They are random in the sense that
no predictions about future states can be made, yet they arise from a completely deterministic
system. Attractors of this type are called chaotic or strange attractors (see Devaney, 1986,
p. 50, for formal definitions). Interestingly, they have a fractal nature; an infinite number of
points show a self-similar detail at all levels of magnification.

Figure2.Plotof solutions
to the Lorenz convection
model in state space for
the same conditions as
Figure 1 but starting after
t* = 1650. The trajectory
loops around two station-
ary solutions but never
repeats itself, thereby
defining a strange attrac-
tor (modified from Nese,
1985).
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To grasp just how chaotic this behavior is, consider the experiment performed by
Crutchfield et al. (1986) illustrated in Figure 3. Solutions of the equations are shown in state
space at selected times for each of 10,000 initial conditions, so close together they appear as
one dot at t* = 0. The solutions spread out through time to cover the entire attractor,
dramatically illustrating sensitive dependence on initial conditions and the unpredictability
of future states. This sensitivity has become known as the butterfly effect, from Lorenz’s
(1979) address entitled, “Predictability: Does the flap of a Butterfly’s Wings in Brazil Set Off
a Tornado in Texas?”

To summarize, the above example illustrates that some forced nonconservative hydro-
dynamical systems may exhibit quasi-periodic behavior over the short term with no
periodicity in the forcing, Over the longer term they may show chaotic behavior, depending
upon the magnitude of the coefficients. The chaos is unpredictable, sensitive to initial
conditions, yet bounded, and recurrent, producing a fractal geometry.
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Figure 3. The Lorenz strange attractor of Figure 2 with additional solutions overlaid to illustrate
sensitive dependence to initial conditions. Att*=0 a point represents 10,000 initial conditions thatlead
to the 10,000 solutions presented at t* = 6,000 (modified from Crutchfield et al., 1986).

ARE QDS MobpELs SUSCEPTIBLE TO CHAOS?

Although there is no formal mathematical answer to this question, there are some general
guidelines we can use. These guidelines, which will be considered in turn, are:
1. Classification of the model’s system of equations with respect to physical type,
dimension, degree of coupling among equations, and degree of nonlinearity;
2. Values of the Lyapunov dimension and correlation exponent; and
3. Sensitivity to initial conditions.
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Classification

A QDS model can be classified first according to physical type. By this is meant whether it
isan openor closed organizational, kinematic, or dynamical model, and if the latter, whether
it is forced and whether it is dissipative. Most of the QDS models presented in this volume
are open and dynamical in that they receive mass from outside and go beyond the geometrical
relations of the kinematic model to include evolution of the state variables with forces also
considered. Most are forced in that they are fed energy by a boundary condition, and most
are dissipative in that they lose energy through friction. Itisnow understood that open, forced
and dissipative dynamical systems such as these are susceptible to chaotic solutions (Shirer,
1987). This arises because of the competition between the forcing and dissipative processes.
Also,ithasbeenargued on thermodynamic grounds that systems closed to their environment
with respect to mass transport should not exhibit instability (Feinberg, 1980).

Dimension or number of degrees of freedom seems to be an important consideration for
chaotic behavior. The Lorenz attractor disappears in a three-dimensional convection model
(although new chaotic attractors appear), probably because turbulence is three-dimensional
and Lorenz’s two-dimensional model is hunting for a stable solution that only is available
with another degree of freedom (Shirer, 1987). This raises the issue, long debated in
population ecology, of whether more complex systems are more stable or less stable than
simpler systems. In this usage, complex means both more variables and greater degree of
coupling among variables. The general conclusion from qualitative stability analysis of
partially specified systems is that progressively more complex systems are likely to be
progressively less stable (Levins, 1974). However, Shaw (1987, p. 1653) concluded the
opposite: “Computer experiments show that the coupling together of complex systems often
increases . . . the degree of order in the composite system.”

Finally, one might suspect that the degree of nonlinearity may determine whether a
system exhibits a chaotic attractor. No general rules seem to exist on the subject, however (H.
N. Shirer, personal communication, 1988).

Lyapunov Dimension and Correlation Exponent

The Lyapunov Dimension and Correlation Exponent are thought to measure the number of
dimensions necessary to specify the region of the attractor in the state space. For example,
if there are N = 3 equations in a dynamical system, then the state space has three axes
corresponding to the three state variables, and the largest dimension possible for an attractor
is 3 orgenerally, N. This would be a volume in the state space that attracts or traps trajectories
orbiting near it. Similarly, the point and limit cycle attractors mentioned earlier would have
dimensions of 0 and 1, respectively. This information becomes useful in the present context
because the dimensions of strange attractors are usually nonintegers, a reflection of the
folded, fractal structure of the chaotic solution sets. Thus, determining whether a model will
exhibit chaotic behavior reduces to determining the dimensions of its attractors.

The Lyapunov dimension was defined by Kaplan and Yorke (1979) as a function of the
Lyapunov exponents of an attractor. In the interests of brevity and because the correlation
exponent is easier to calculate, the Lyapunov dimensjon will not be discussed further here;
see Nese (1987) for details.
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The correlation exponent v, was defined by Grassberger and Procaccia (1983a,b) asa
measure of the local structure of an attractor. It is conjectured to be related to the Lyapunov
dimension and can be calculated from a time series of one component of the dynamical
system.LetY.,j = 1,2,..n, be npoints on an attractor residing in N-dimensional state space.
The points may be obtained from a QDS model, for example, as a times series Yj = Y(t+jT)
of adependent variable, where T is a fixed time increment. A point Y, is selected and all the
distances Y -Y Il of this point from the remaining n-1 points are calculated. This procedure
is repeated for all the Y, points on the attractor and a correlation integral C(L) is computed

as
n

cL)= m L HL-1Y-Yal)
oo IV (k1
(when j ¢k)
where H is the Heaviside function (if L - IIYj - Y, lI>0, then H= 1, otherwise, H=0) and L
is a fixed distance measured from Y, . This is equivalent to calculating the density of points
on the attractor within a range of distances L. from Y, and then finding the average of this
density over all values of k. In general one expects that

C@L) L
where v, the correlation exponent should be 1 if the attractor is a line, 2 if a surface and so
on up to N, the dimension of the state space. In the latter case the data points are totally

uncorrelated, i.e., random. Operationally, v is determined by finding the slope of the line
when In[C(L)] is plotted against In[L].
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Figure 4. Graph of the correlation integral versus L computed using 4,000 points on the periodic
attractorof the Lorenz system whenp= 10,b=_8/3, and r=300. The slope of the points is approximately
one, indicating the attractor is a line, and therefore nonchaotic.
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As an example, consider a plot of this type for the Lorenz system (Fig. 4) when the
normalized Rayleigh number r, is 300 (Nese, 1985). At this r the attractor is a stable limit
cycle, meaning that the solutions have settled down to stable oscillations and the graph of the
state spaceisaloop. By the above reasoning we expect v to be 1, a value closely approximated
by the slope of the data points in Figure 4. For the case discussed above when r =28 and the
attractor is chaotic, Grassberger and Procaccia (1983a.b) calculated a v of 2.05 + 0.01, a
fractal dimension as expected. Thus, it may be possible to examine a QDS model’s output for
chaotic behavior by examination of its correlation exponent.

Sensitivity to Initial Conditions

Probably the most straightforward method for determining amodel’s susceptibility to chaotic
behavior is to test it for sensitivity to initial conditions. A chaotic attractor is strongly
suggested if for similar (but not identical) initial conditions the solutions show early similar
behavior that diverges with time.

It appears then, that as a class, QDS models could be susceptible to chaotic behavior,
especially when integrated over long time periods. Solutions can be inspected for chaos,
however, and this possibility should be considered along with other more common explana-
tions such as numerical instability.

IMPLICATIONS OF CHAOS TO STRATIGRAPHY

There are several implications of chaotic solutions to QDS models. First, they make
prediction difficult. Without chaos we expect the final configuration of sedimentary facies,
forexample, to be only weakly affected by slight changes in the initial conditions. With chaos,
any configuration within the region of the attractor is possible. Second, as Shaw (1987)
pointed out, there need be no unique causative periodic forcing required to explain apparent
periodicities in the rock record. They can arise from the nonlinear coupling as sets of
interacting resonances, much as in the Lorenz model (Fig. 2). The seemingly periodic
repetitive successions of lithologies, currently interpreted as a Milankovitch signal, should
be examined with this in mind. Finally, and in a more positive vein, certain complexities of
the stratigraphic record may now have an explanation in chaos theory.

CoNCLUSIONS

This paper has attempted to define typical behaviors of nonlinear dynamical systems,
particularly chaos. It has explored the extent to which quantitative dynamic stratigraphic
models may be susceptible to chaos, and has suggested some implications for stratigraphy.
There is everyreason to believe that some QDS models will contain chaotic attractors in their
state spaces; indeed, this situation may be necessary if we are ever to explain complexities
of the stratigraphic record.
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