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ABSTRACT 
Many geologic systems are at present only 

partially specified, in that the variables and positive 
and negative feedback loops are known but the exact 
functional relationships among variables are not. It is 
still possible to describe the response of these systems 
to a perturbation by analyzing the eigenvalues derived 
from the coefficient matrix of the system equations 
evaluated near an equilibrium point. The method 
predicts that a simple model of stream at-a-station 
hydraulic geometry is metastable provided the relative 
rates of change of friction factor, hydraulic radius, 
and slope are large, intermediate, and small, 
respectively. 

INTRODUCTION 
Geologic systems are usually rich in variables and inter-

connectedness and consequently are usually quite intractable. 
They often are governed by sets of nonlinear differential equa-
tions that are notoriously difficult to solve, especially as the 
number of elements or connections increases beyond a few. 
Worse, many have such poorly known functional relationships 
among variables that quantitative solutions are not possible 
at present. A class of this kind, where the types of feedback 
among variables (positive or negative) are known but the exact 
functional relationships are not (for example, Fig. 1) is called 
partially specified (Levins, 1974). Chorley and Kennedy (1971) 
gave numerous geologic examples. 

Two questions of interest concerning partially specified 
geologic systems are, What is the response of a system when 
perturbed? and How do the speed and direction of that response 
depend on the strengths of the individual links in the feedback 
loops, the simplicity of organization, and the various relaxation 
times involved? For example, we could ask, How does a reach 
of a stream change its slope, channel shape, and other variables 
in response to dredging? Does it return to the initial state, and 
if so, how long does it take? If not, does it find a new equili-
brium configuration or does it increasingly deviate f rom its 
initial state? These three responses characterize stable, metastable, 
and unstable systems, respectively. 

This paper presents a method drawn from stability theory 
for dynamical systems (compare Braun, 1978; Porter, 1967; 
Levins, 1974) to answer such questions for this general class of 
systems. The method tests for stability characteristics around a 
system's equilibrium points and for the impact that a varying 
element has on the levels of its coexisting elements. If a system's 
response to disruption of an equilibrium point is known, say 

Arrows and open circles indicate positive and negative feedback loops, 
respectively. The represent partial rates of change of variable /' with 
variable j. 

empirically, then the model defining the system's dominant 
variables and feedback loops can be tested for accuracy. Con-
versely, if the model is accepted as accurate, the response of 
each prototype variable to a perturbation of another can be 
explored along with the prototype's stability as a whole. In 
either case, the analysis specifies the ranking of the rates of 
change of one variable with another that is necessary for system 
stability. 

THEORY 
Consider a proposed geologic system of n variables, X, 

whose levels vary with time, t, as functions, F, of each other. 
That is, 

~ = F(X). (1) 
at 

This formulation assumes that the system variables adjust to 
arrive at states acceptable to each acting in the conditions given 
by the other variables. The F may be nonlinear but may not 
depend explicitly on t. As will be shown later, for this analysis 
it is not necessary to know the form of the F, only whether an 
X j is increased, decreased, or unaffected by a change in another 
Xj. For example, Figure 1 shows a model of a five-variable 
system in which, following Levins (1974), positive and negative 
feedbacks (F) among variables are denoted by an arrow and an 
open circle, respectively. If there is no connecting line, the impli-
cation is that variables do not directly affect each other. 
Equation 1 written for X3 would be 

^ = f3 (X„ X„ X5). 
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How does this system respond to a perturbation of the XI 
We can answer this by exploring the conditions for stability of 
equation 1 around its equilibrium points. 

Following Lotka (1956) and Braun (1978, p. 365), let U be 
an equilibrium point of X and let F(X) have two continuous 
partial derivatives with respect to each of its variables. Then a 
deviation of X f rom equilibrium is 

a: = X — C. 

Substituting equation 2 in equation 1, 

dx~ — 
^ = F(x + C). 
dt 

(2) 

(3) 

By Taylor 's Theorem, the right hand side of equation 3 can be 
written as (Braun, 1978) 

F(C+x) = F(Q+AAT+gW, 

where g(x) is a vector of polynomials with terms of two or 
higher order, each small compared to x~, and which vanish at 

0 and 

(Q dF1 (C)> dX, dX„ 

dFn(C) a f ^ ( C ) 
i dXx dXn 

Because g(x) is very small with respect to A x if x is small, 
it is mathematically sufficient to explore the linear ordinary 
differential equation system 

dt 

for stability. Every solution to equation 6 is of the form 

*(/) = T C e x p [ X / ] , 

(5) 

(6) 

(7) 

where v*are eigenvectors of A corresponding to eigenvalues, X. 
The stability of equation 1 is determined by whether the real 
parts of the eigenvalues, X, of A are each greater than, equal to, 
or less than zero. This follows f rom equation 7, which shows 
that if all X < 0, all x approach zero as t approaches infinity. 
Therefore, from equation 2, all X approach C, their equilibrium 
values. That is to say, the system is asymptotically stable near an 
equilibrium solution, C. By the same reasoning, if at least one 
eigenvalue of A has a positive real part , the system is unstable 
and the values of the variables increasingly deviate from their 
equilibrium values with time. If at least one eigenvalue has zero 
real part with all other eigenvalues less than zero, the stability 
of the system can be determined for the nonlinear case only by 
assuming small perturbations. In that case and for any linear 
case, the system is metastable if there is one eigenvalue equal to 
zero or if there are k linearly independent eigenvectors for each 
of k multiple eigenvalues with zero real parts. Otherwise 
the system is unstable (Braun, 1978, p. 354). 

Now note that the terms in A (equation 5) are, by 
definition, the a¡j of Figure 1. Thus, the signs of X are deter-
mined by the of the system matrix, which themselves give 
the type (negative or positive) and amount (strong or weak) of 
feedback between variables i and j. In most cases, a system's 
stability can be specified with only a knowledge of the signs of 
the determined, say f rom statistically significant correlation 

coefficients among variables. Otherwise, at least the relative 
orders of magnitude of the coefficients must be known. Analyz-
ing the behavior of a system thus reduces to analyzing the 
roots (eigenvalues) of the characteristic polynomial of its a(y 
matrix. 

Because these characteristic equations frequently are higher 
order polynomials and hence are not easily solvable, criteria are 
needed for relating the roots of a polynomial to its coefficients. 
One useful criterion here is the Routh-Hurwitz criterion 
(Cesari, 1971), f rom which it can be deduced that all the roots 
of a real characteristic equation have negative parts if and only 
if all the coefficients, a 0 , a ! . . . a n , of the characteristic 
polynomial are positive and, for the case when n — 4, 

aia2oi-j — ot\ — ottot\ > 0. 

This will be used in the next section. 

(8) 

(4) 
EXAMPLE 

It is still not possible to predict the at-a-station hydraulic 
geometry of alluvial channels f rom known functional relation-
ships among the important variables. As formulated by Hey 
(1978), there are nine variables and therefore nine degrees of 
freedom for channel adjustment: average velocity, V; hydraulic 
radius, R; channel slope, S; dune wavelength, A; dune height, A; 
wetted perimeter, P; maximum flow depth, d m ; channel sinu-
osity, p; and meander arc length, z; all are measured at bankfull 
flow. In addition, the boundary conditions are some given water 
discharge, upstream sediment load, bed and bank grain sizes, 
and valley slope. Because the exact functional relationships 
among these variables are not known but the types of associa-
tion (either positive or negative) are, the system is partially 
specified and therefore amenable to the method. 

Consider the simplified formulation of this system in 
Figure 1, where, for a stream reach with a given set of boundary 
conditions, Xx = R, hydraulic radius; X2 = f, Darcy-Weisbach 
friction factor; X3 = V, mean stream velocity; X4 = Q s , 
bedload transport rate; and X5 = S, bed slope. The original nine 
variables have been reduced to five by assuming a straight reach 
and letting R represent P and d m , and f represent A and A. In 
this model, hydraulic radius is assumed to positively affect 
stream velocity (link a3 1 of Fig. 1) as in Manning's equation. 
Hydraulic radius negatively affects bedload discharge ( - a 4 1 ) 
because sediment transport rates are inversely proportional to 
depth of flow, all other factors held constant. The friction factor 
negatively affects velocity (— a32), and velocity positively affects 
the friction factor (a23) by increasing bedform size at low to 
intermediate Froude numbers. Stream velocity positively affects 
bedload transport (a43). Bedload transport is self-damped ( —O44) 
because the stream is capacity limited. In this formulation 
bedload-transport rate negatively affects slope ( — a54). Within 
a reach, an increase in Q s implies that sediment is being scoured 
f rom the bed and banks. That scour decreases the local slope, 
as is well known f rom case studies of stream channelization. 
Likewise, a decrease in Q s along a reach with resulting deposi-
tion increases the local slope until Q s is just sufficient to trans-
port the imposed load. This is not to be confused with relation-
ships such as Lane's for an open fluvial system where Q s and S 
are positively correlated. An increasing bedload transport rate 
in the reach is reasoned to increase the hydraulic radius (a14) by 
deepening the channel or making it more nearly semihemispheri-
cal in cross section. As in the previous argument, increasing Q s 

in a reach means increasing scour. For many streams (Park, 

4 9 2 OCTOBER 1981 



1977), this scour occurs more on the bed than on the banks, thus 
increasing R. Finally, as slope increases, so does mean stream 
velocity (a35). 

How will this nonlinear system respond to a perturbation of 
the XI We can answer this in the sense defined previously by 
assuming that the stream is near an equilibrium point and the 
deviations from equilibrium are small. The system matrix is 

0 0 0 014 0 

0 0 a23 0 0 

«31 - <¡32 0 0 <Z35 

«41 0 «4 3 - «44 0 

0 0 0 - «54 0 

That is, each link from variable Xj to Xj in Figure 1 represents 
the effect of Xj on Xj and corresponds to the matrix element 
(¡¡j in equations 5 and 9. 

The characteristic equation of A is 

X5 + fl44X
4 + («23°32 + fln£<4l)X3 + (023^32044+035043054 

-01 40 310 4 3 )X 2 + 014023032041^ = 0 (10) 

or 

X4 + o44X3 + (a2 3a3 2 + 0 u 0 4 i ) X 2 + (a23a32ai4 + a35ai3a5i 

- a i 4 a 3 , a 4 3 ) X + 0^23032041 = 0 (11) 

and X5 = 0. 

Because equation 10 has one zero root, we can conclude 
that the system is at most metastable. That is to say, a stream 
may adjust its at-a-station hydraulic geometry to a perturbation 
by obtaining some new combination of values; for example, if 
its slope is increased a small amount , it will not return necessarily 
to its preperturbation value. 

To determine if the system is unstable, we must determine 
if equation 11 has any zero or positive eigenvalues. Applying 
the Routh-Hurwitz criterion, X,, 2, 3, 4 of equation 11 are less 
than zero if and only if: 

023°32044 + 035043054 > 014031043. U 2 ) 

and from equation 8, 

(044023032 + 044041014) (035043054 + 023032«44 ~ 014031043> 
> 044014023032041 + (035043054 + 023fl32044 ~ 014031043)2- ( '3) 

Equation 12 means that negative feedback in the f-V loop, 
Q s self-loop, and V-Q s-S loop must overpower the deviation-
amplifying loop of Q s-R-V. Equation 13 is more complicated. 
It is one of a class of stability requirements specifying that 
negative feedback coming from long loops cannot be too strong 
compared to negative feedback f rom shorter loops (Levins, 
1974, p. 128). Here, equation 13 is generally satisfied if the f-V 
loop and Q s-R loop are of unequal damping strengths. 

Conditions 12 and 13 can be met most simply if the rates 
of change of variables with respect to each other in the f-V loop 
are largest, Q s -R are intermediate, and V-Q s-S loop are smallest. 
This ranking seems intuitively correct because we expect a 
stream to change its friction factor in (on the order of) hours, 
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its hydraulic radius in years, and its slope in tens of years. 
Where the hydraulic radius can adjust at a faster rate than the 
friction factor, such as in glacial outwash streams, the model 
predicts instability, one manifestation of which may be braiding. 

I know of no data documenting this sequence of 
adjustments of a natural closed fluvial system. Data are avail-
able, however, on the detailed response of a fluvial system to 
a change in a boundary condition. Andrews (1979) has docu-
mented the hydraulic adjustment of the East Fork River, 
Wyoming, to increased sediment discharge from a tributary. Due 
to irrigation since 1900, Muddy Creek has greatly increased its 
sediment load to East Fork River while adding less than 3% to 
East Fork River's flood discharge. The response of East Fork 
River has been to initially adjust only roughness and depth 
and then after several years to adjust width. Slope has not 
adjusted yet, but Andrews thinks it will after " a considerable 
length of t ime" (1979, p. 92). This is exactly the relative ranking 
of the rates of change the analysis showed to be necessary for 
metastable equilibrium. 

CONCLUSIONS 
The method of analysis presented here for partially specified 

systems gives qualitative answers to the questions, What is 
the response of a system when perturbed? and How does that 
response depend upon the strength of the individual links in 
the feedback loops? The minimum information necessary is a 
signed, directed graph showing the system variables and their 
positive and negative feedback loops. When applied to a 
simplified closed system of the at-a-station hydraulic geometry 
of a stream, it predicts that the system is metastable provided 
the rates of change of friction factor, hydraulic radius, and slope 
are highest, intermediate, and lowest, respectively. Streams 
violating this ranking are unstable. 
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