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orogeny.

relief. Our interpretation is that the orogen varied

-along strike among states III-V in Figure 4 of

Slingerland and Beaumont (this volume) by the end
of the Taconian orogeny. '

Following the Taconian orogeny, sedimentation rates
declined in the basin. Approximately 900 m of
carbonates, salt, fine-grained clastics, and thin,
mature shelf sandstones were deposited during Middle
Silurian to Early Devonian time- (Fig. 2), reflecting
relative tectonic quiescence along the orogen.
Although plate convergence continued along the
eastern Laurentian margin. during this interval (Van
der Voo, 1988), crustal loading by overthrusting
apparently was minor.

Commencing in the Early Devonian in New England

and ending in the Early Mississippian in Pennsylvania,

convergence between Laurentia and an unspecified
plate (Ferrill and Thomas, 1988) produced a
metamorphic, plutonic, and loading event called the
Acadian orogeny. The resulting foreland basin fill in
the central Appalachians is called the Catskill-Pocono
clastic wedge (Marcellus through Pocono Formations,
Fig. 2), and is the subject of our field trip on days 3
and 5.

Closing of the proto-Atlantic continued during the
Mississippian to Permian, culminating in the collision
of Gondwana with eastern North America and the
third Paleozoic deformation event, the Alleghanian
Outboard loading rejuvenated the Acadian
foreland basin, and it received a minimum of 7.5 km
of sediments from the orogenic highlands to the east
(Mauch Chunk through Conemaugh Fms. of Fig. 2 seen
on field trip days 4, 5, and 6). Subsequently the

whole eastern half of the orogen was subjected to
folding and thrusting, and, to a lesser extent,
metamorphism  and  plutonism  from  relative
transpression.  (see Slingerland and Beaumont, this
volume for details).

The Permian and Early Triassic history of the
Appalachian orogen is uncertain, because there are no
preserved deposits of that age. It is clear however
(Fig. 2), that by the Carnian or late Landinian (230-
225 Ma) sediments had begun accumulating in basins
along reactivated strike-slip and thrust faults
(Manspeizer and Cousminer, 1988; Traverse, 1987),
recording the initial breakup of Pangea (days 6 and
7. Rupture occurred roughly along the present
continental shelf edge (see Manspeizer and Huntoon,
this volume, for details) and sea-floor spreading
began between late Early to Middle Jurassic (190-175
Ma)(Klitgord and Schouten, 1986, p.364).

A second passive margin developed, of broad
platforms having fairly thin sediment cover and basins
whose margins probably mark the sites of transform
faults- active during the initial breakup (Folger et al.,
1979). Jurassic sediments of the passive margin tend
to be terrigenous lagoonal, fluvial, or deltaic
nearshore lithosomes ponded behind widespread
carbonate build-ups at the shelf edge. During the
Cretaceous and into the Cenozoic, a thick sequence of
fluvial, deltaic, and shelf sediments prograded seaward
to form a well defined slope and rise. The result is
an  eastward-thickening  wedge of  primarily
unconsolidated sediments, about 2.4 km thick in the
Delmarva area, thickening to 9 km in the Baltimore
Canyon Trough (Folger et al., 1979) (day 8.)

TECTONICS AND SEDIMENTATION
OF THE UPPER PALEOZOIC FORELAND BASIN
IN THE CENTRAL APPALACHIANS

Rudy Slingerland and Christopher Beaumont

INTRODUCTION

Foreland basins are sedimentary basins lying
cratonward of major compressional zones. They are
formed during continent-continent collisions as a
result of outboard crustal loading, or by a
combination of loading and subduction of oceanic
lithosphere. Those due primarily to outboard loading
are especially interesting because the creation of the
basin and the source terrain both arise from the same
cause --- thickening of the crust by overthrusting.
In these basins we expect to see a pattern of
evolution that reflects adjustments to the size and
rate of application of the overthrust load, variations
in time and space of the lithospheric rheology, and
feedback between sedimentation in the basin and rates
of erosion of the thrust stack.

T152:

Our intention here is to illustrate just such an
interplay between tectonics and sedimentation in a
particularly revealing example, the Appalachian
foreland basin of the Appalachian Orogenic Belt. Our
method is to first describe some concepts of basin
creation using models of flexural response of the
lithosphere and then to describe and interpret the
character of two orogenies---the Acadian and

Alleghanian---and the foreland clastic wedges that .

resulted from them. The treatment is general; details
of the geodynamic modelling can be found in Quinlan
and Beaumont (1984), Stockmal et al. (1986), Beaumont
et al. (1987), Beaumont et al. (1988), and Jamieson and
Beaumont (1988). More in-depth discussions of the
field relationships and tectonic evolution can be found
in Fisher et al. (1970), Williams and Hatcher (1982),
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Donaldson and Shumaker (1981), Tankard (1986),
Rodgers (1987), and Van der Voo (1988).

FLEXURAL MODELS:
CONCEPTS AND BASIC RESULTS

The best starting point for a discussion of the
models is a review of the flexural response of the
lithosphere to supracrustal loading. The lithosphere’s
flexural properties determine the form of the foréland
basin produced by a given overthrust load as shown
diagrammatically in the cross section cartoon of
Figure 1. A load emplaced on the surface of an
originally flat lithosphere deforms the plate into the
profile indicated by curve l. If the lithosphere’s
response is effectively elastic, then it will maintain

Flexural Response of a Llthosphere that Relaxes Stress

Load

G) Loading

b) Unloading

FIGURE 1 Qualitative representation of the loading
and unloading response of a model lithosphere that
releases stress by some form of thermally controlled
creep mechanism. See text for discussion.

this flexural shape while the surface load changes.
If, however, the lithosphere can relax the bending
stresses set up by the surface load by creep, then its
flexural profile will evolve through time to assume the
shapes indicated by curves 2 and 3, even though the
magnitude of the load remains constant. The
timescale over which stress relaxation occurs depends
on the mechanism by which stress is relaxed. If
viscoelasticity provides a valid model of the relaxation
mechanism (e.g. Quinlan and Beaumont, 1984; Beaumont
et_al., 1988), then it is the viscosity distribution
within the lithospheric plate that determines the
relaxation timescale. Given that the viscosity of

rocks decreases with increasing temperature and that
the viscosity of the mantle apparently determines the
approximately 10 -105 year relaxation timescale of
glacial rebound, relaxation times spanning the range
103-108 years are expected for. the lithosphere. Note
that in Figure 1 the peripheral bulge adjacent to the
flexurally downwarped region migrates toward the
surface load as stress is relaxed and the basin
deepens and narrows. This migration may uplift and
allow erosion of sediments deposited earlier within
the foreland basin. In principle therefore, erosional
patterns at the distal edge of the basin can be used
to determine whether the lithosphere is able to relax
stress and the timescale over which this relaxation
occurs. However, there are other mechanisms, such
as sea level change, that may also create
unconformities, and it is therefore difficult to
attribute any particular unconformity unequivocally to
lithospheric stress relaxation.

Panel (b) of Figure 1 assumes that part of the
orogenic load is removed from a surface made
horizontal by erosion of uplifted areas and
sedimentary infilling of depressed areas (curve 3).
Note that the foreland response to unloading is a
mirror image of the response to loading. Uplift first
occurs over a broad region (curve 4) and becomes
successively concentrated near the unloaded region
(curves 5 and 6) if there is stress relaxation. Net
reduction of orogenic loading should therefore be
recorded in the foreland stratigraphy as an erosional
unconformity present over wide areas and having the
greatest missing section near the unloaded orogenic
region.

Two additional points can be made from these
simple concepts. First, each load change applied to
the lithosphere evolves through the same sequence of
flexural deformation. If the lithospheric response to
loading is linear, their superimposed effect in time
and space is the sum of the individual effects.
Second, an overthrust load that migrates laterally
toward the foreland faster than relaxation allows the
peripheral bulge to migrate in the opposite direction
will create an unconformity as the peripheral bulge is
driven across the foreland ahead of the overthrust
load (Jacobi, 1981; Quinlan and Beaumont, 1984).

These concepts can be combined to give a first-
order explanation of the sequence of events in the
development of a multistage foreland basin, like the
Appalachian basin (Fig. 2). The first stage shows the
development of a basin-wide unconformity as the
peripheral bulge migrates ahead of the thrust loads.
This phase is followed by subsidence and the
formation of a foreland basin. During the quiescent
(relaxation) phase, the peripheral bulge is uplifted and
migrates toward the thrust load, only to be halted by
the next orogeny and loading phase which,
superimposes the next major sedimentary package of
the foreland basin. Thus, as earlier workers
recognized in principle, the stratigraphy and
sedimentology of the basin fill and the positions of
the unconformities in space and time contain
important evidence on activity -in the adjacent
orogen, a point we will return to later.
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The question of ' antecedent conditions and
inheritance is important for the style of foreland
basins.. Although the role of these conditions and
details of their effect have yet to be worked out in
detail, some aspects have been modelled (Karner and
Watts, 1983; Royden and Karner, 1984; Stockmal et al.,
1986; Stockmal and Beaumont, 1987). Figure 3
illustrates how Stockmal et _al., (1986) incorporated
thermal effects and lateral changes in the flexural
properties of the lithosphere into models of rifting,

passive margin development, plate collision, and
overthrusting. Simple elastic plates, the bases of’

which are defined by a given isotherm were used in
the flexural models (Beaumont et al., 1982; Keen and
Beaumont, in press).

The significance of these model results (Fig. 4) is
that some sense of the geometrical relationship
between the overthrusts, their topography, and the
flexed crust of the inherited margin is obtained. For
example: about 20 km thick loads can overthrust the
outboard part of the margin before they need be
subaerially exposed (PanelIIV); mountain roots beneath
orogens of Himalayan proportions may be in excess of
60 km thick (Panel VII); the ultimate preservation of
a foreland basin, once the orogen has been eroded to
base level, can be attributed to that part of the
overthrust load that still remains on or outboard of
the antecedent rifted margin (Panel VIII), and; the
characteristic Bouguer gravity anomaly common to

{a) Beekmaniown - Knox Unconformity

{b) Ordovician Foreland Basin

FIGURE 2 Cartoon illustrating the development of a
multi-stage foreland basin on a lithosphere that
relaxes load-induced stress. The uplift of the
peripheral bulge is shown exaggerated by a factor of
10 in (c). Circles represent conglomerates, dots
represent sandstone, dashed pattern represents shale,
and the brick pattern represents carbonates. Bold
arrows show overthrust ‘and peripheral bulge
migration. Fine arrows illustrate active overthrusting.

many compressional orogens (Fig. 5) may be
interpreted as the superposition of the anomaly from
the inherited rifted margin (the steep gradient above
the transitional zone of crustal thinning, Figure 5)

PASSIVE MARGIN

Ly
TSR
Continental Crust p g -
I i 7
{ Oceanic Crust Strong
Moho | _Lilh_osphere T ____L_,._
V l __’_- (t,)-:'/r
//_________T(t,“)

/
; / Asthenosphere

ACTIVE MARGIN

Next Allochthon
Profite

SRS : @ —
Y o)

FIGURE 3 Schematic diagram of the quantitative
approach to modelling the transition from passive
(rifted) to active (convergent) margin used by
Stockmal et al., (1986). Stages are constructed in
steps following geologically instantaneous rifting;
stretched continental crust beneath the margin is
located between vertical dashed lines of the upper
panel. Steps involving the addition of sediments to a
specified bathymetric profile (upper panel) are
alternated with thermal time steps during which
thermal relocation occurs (shown schematically as a
single isotherm T at two times, t; and tj,;). The
flexural response of the lithosphere changes through
time because the thermally controlled effective
thickness of the lithosphere also changes. The
tectonic switch from passive to active margin is
modelled by overthrusting loads sequentially onto the
passive margin (lower panel). These loads are
shoveled into position up to a specified topography
(dashed line of lower panel) instead of being pushed
in a geologically correct manner. This approximation
is reasonable when considering subsidence and
sedimentation in the undisturbed part of the foreland.
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and the longer wavelength flexural component above
the foreland. The position of the steep Bouguer
gradient may therefore give the approximate location
of the inherited rifted margin beneath an orogen
(Stockmal and Beaumont, 1987). The change in
geometry with increasing amounts of convergence
between the overthrusts and the inherited margin can
also explain the major change in the associated

sedimentary facies from flysch to molasse. Figure 4 Moho
(Panels II and IV) also shows that in the early stages — .
of convergence, before the overthrusts have ~ Mantle

completely mounted the margin, the foreland basin
may take the form of a deep asymmetric trough that i
does not have a characteristic flexural shape.
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FIGURE 4 Selected steps in the evolution of the

model shown in Figure 3 (from Stockmal et al., 1986) Moho

in which an orogen is built on a 120 My old rifted Manile

margin and then eroded. The vertical exaggeration is

15:1. Random-line pattern is continental and

stretched continental crust. Vertical ruled pattern is ocean crust. Bold lines with bold arrows represent. the
decollement. Bold wavy line represents an unconformity. Stipple pattern marks sedimentary basins. Solid
triangles mark the position of the peripheral bulge. Bold dashed line (panel VII) marks the depth within the
orogen that is exhumed to the surface during erosion and isostatic rebound between stages VII and VIIL
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FIGURE 5 Bouguer gravity anomaly (solid line)
predicted for a model (lower panel) similar to that of
stage VIII in Figure 4. Although larger in amplitude,
this anomaly has the same character as that from a-
typical profile across the western Canada basin and
Canadian cordillera (dashed line). The importance of
the two parts of the gravity anomaly in relocating the
position of the rifted continental margin is explained
in the text and in greater detail by Stockmal and
Beaumont (1987).
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Decoupled

So far in this summary we have concentrated on
cross-sectional views, however, the strike variation in
loading along an orogen and the interaction of the
foreland basin with other sedimentary basins adds
considerable variety to the concepts already
developed. The cartoon (a) in Figure 6 illustrates the
plan view of a foreland basin and peripheral bulge
produced by a square load pattern. Figure 6b
illustrates the style of coupling between a foreland
basin and an intracratonic basin like the Michigan
basin. Figure 6c¢ illustrates how superposition of
peripheral bulges can generate broad cratonic arches
and domes. Our interpretations suggest that all of
these features exist within the Eastern Interior region
of North America and these figures illustrate the
archetypes for the geometrically more complex
examples that are presented later. The principles are,
however, no more complicated than those illustrated
here. The importance of the strike variability in
loading is clear when it is remembered that loading in
one part of an orogen can cause flexural subsidence
and sediment accumulation in the neighboring part of
the foreland basin at the same time that it is
producing flexural uplift and erosion further along
strike. ’

ANTECEDENT CONDITIONS IN THE
APPALACHIANS

The Appalachian foreland basin lies on Grenvillian
(1 Ga) North American basement, inboard of the
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FIGURE 6 a) Cartoon illustrating initial deformation of a uniform lithosphere produced by a square load either
] deposited on the surface or intruded at depth. The upper panel depicts a plan view (not drawn to scale). b)
‘ Flexural interaction between a foreland basin (right) and an intracratonic basin (left). The upper panel shows a
plan view of the basins in the decoupled position corresponding to the first cross-section (below). Subsequent
cross-sections show the nature of the interaction when basins are closer together. Note that the effect of
lithospheric relaxation is not included. This has the tendency to decouple yoked basins with a progression
somewhat like that moving upward from the bottom cross-section. c¢) Flexural interaction between a foreland
basin (right) and two intracratonic basins (left). Arched (light stipple) and domed (successively darker stipple)
regions are produced by superposition of the peripheral bulges. Note, for the configuration shown, that the
deformation yokes the foreland basin with the upper intracratonic basin yet raises an arch between the foreland
basin and the lower intracratonic basin because of their greater distance of separation.
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crystalline Appalachian Mountains and primarily south
of New York State (Fig. 7, Appalachian Basin). It
came into existence as early as Middle Ordovician time
during the Taconian orogeny, was more-or-less
continuously active through the Acadian and
Alleghanian orogenies, and ceased receiving sediments
sometime in the Permian (see the Introduction for a
more complete account of Appalachian orogenesis).

At the start of the Early Devonian and immediately
prior to the Acadian orogeny, the Appalachian orogen
consisted of an inboard marine foreland basin filled
with a maximum 7.3 km of Eocambrian to Late Silurian
sediments resting on Grenvillian crystalline basement,
and an outboard source terrane consisting of overthrust
Taconian island arc, ocean crust, and microcontinent
fragments. The source terrane for the most part,
rested on attenuated continental crust and ocean
lithosphere, and therefore was of low relief.

CHARACTER OF THE OROGENIES AND
BASIN FILL

Acadian Orogeny

The Acadian orogeny is characterized by a region
of deformation, metamorphism, and plutonism centered
in New England and the Maritime Provinces of
Canada, but is recognizable as far south as Alabama.
In New England the earliest signs of the Acadian
orogeny are clastics of late Early Devonian age
(Seboomook-Littleton Fms.) overlying carbonates
(Rodgers, 1987). By the Middle Devonian, polyphase
deformation and metamorphism involved rocks as
young as early Middle Devonian. Metamorphism in
New England was regional, in places reaching
sillimanite grade, and coeval with the emplacement of
gneiss domes and intrusion of the voluminous New
Hampshire plutonic series. Although deformation
continued into the Carboniferous, its style changed to
dextral strike slip and normal faulting (Bradley, 1982;
Ferrill and Thomas, 1988) with very low grade
metamorphism, indicating that the Acadian orogeny,
sensu_stricto, ended in New England in the Late
Devonian (Faill, 1985).

Acadian features can be traced southward from
New England where they disappear underneath Long
Island Sound and the Coastal Plain deposits. They
reappear in  central Virginia (Drake, 1980).
Surprisingly, the central Appalachians contain no
definitive unconformities or intrabasin deformation
(Faill, 1985), and no plutonism or widespread
metamorphism in the exposed portions. In fact,
cooling dates for biotite in the central Piedmont
suggest that during the Devonian this terrane mainly
experienced westward movement and slow exhumation
(Dallemeyer, 1988; Jamieson and Beaumont, 1988). Yet
it is here that the largest clastic wedge is preserved,
the 3.5 km thick Middle Devonian to Lower
Mississippian Catskill-Pocono wedge.

In the southern Appalachians evidence for Acadian
orogenesis consists largely of greenshist metamorphism
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(Hatcher, 1978; Jamieson and Beaumont, 1988), ash fall
deposits (Tioga metabentonite) from an early Middle
Devonian volcanic center in Virginia (Dennison and
Textoris, 1970), and a thick Early to Middle Devonian
clastic ~succession preserved in a thrust slice
(Talladega slate belt) (Ferrill and Thomas, 1988).

The explanation of the Acadian orogeny by the
over-all plate tectonic movements of the major
continents and displaced terranes is controversial.
The most recent reconstructions by Van der Voo
(1988) (Fig. 8) attribute the Acadian orogeny to the

‘Late Silurian-Early Devonian collision between the

Appalachian margin of Laurentia and Gondwana’s
margin in northwest Africa (with the Avalonian and
Armorican accreted terranes caught in between).
During Middle and Late Devonian time a newly opened
ocean was forming between Laurentia (with its newly
accreted Avalonian and Amorican terranes) and
Gondwana. This would be consistent with Early and
Middle Devonian clastic wedges and associated
deformation in New England (Rodgers, 1987) and
Alabama (Ferrill and Thomas, 1988), but difficult to
reconcile with the Late Devonian clastic wedge of the
central  Appalachians. Other  paleogeographic
reconstructions attribute the Acadian orogeny to

BASINS AND ARCHES OF
THE EASTERN INTERIOR

FIGURE 7 General basin configuration of eastern U.S.
showing the Appalachian foreland basin (labelled
Appalachian  Basin), the western extent of
Alleghanian thrusting, and the Bouguer gravity
gradient thought to reflect the location of the
inherited rifted margin (from Beaumont gt al., 1988).
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Early Devonian

Late Devonian

FIGURE 8 Devonian paleogeographic reconstructions using paleomagnetic paleolatitudes and biogeographical and
paleoclimatological indicators. The extent of the Catskill epeiric sea is indicated for the Late Devonian

(modified from Van der Voo, 1988).

oblique convergence or major transcurrent movement
along a sinistral strike-slip zone separating Laurentia
and the Avalon terrane during the mid-Paleozoic
(Williams and Hatcher, 1982; Ettensohn, 1985) or, more
recently, oblique convergence or  transcurrent
movement along a dextral strike-slip zone separating

7
ACADIAN OROGENY ISOPACH

Total

Partial

OBSERVED

Laurentia and an unspecified plate during the whole
of the Devonian (Ferrill and Thomas, 1988). The
southward migration of orogeny, the dextral wrench-
fault systems in New England and Alabama, and the
discrete location of clastic wedges are attributed to
collision of promontories along the irregularly-shaped

ACADIAN OROGENY
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FIGURE 9 Predicted evolution of the total sedimentary isopach associated with the model Acadian orogeny
showing its configuration at the end of the Acadian orogeny (panel b) and at present (panel ¢). Panel b should
be compared with panel a, which shows the observed isopach. Shading shows areas of partial and total erosion,
All contours are in feet and the numbered grids in panel b are the thicknesses (km) of the overthrust loads
necessary to produce the model subsidence in the Appalachian basin.
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7
LOWER DEVONIAN ISOPACH

{ HELDERBERG AND.DEERPARK)

OBSERVED

plate margins. The modelling presented below
suggests compression must have continued into the
Late Devonian to produce the basin for the Catskill-
Pocono clastic wedge, and therefore we favor this
latter view,

Acadian Basin Fill in the Central Appalachians

The most notable manifestation of Acadian
orogenesis in the central Appalachians is a pulse of
clastic sediments, commonly called the Catskill-Pocono
clastic wedge. For the purposes of this discussion,
the base of the wedge is placed at the base of the
Middle Devonian (in central Pennsylvania, the
Needmore Shale) and the top is placed at the base of
the Lower Mississippian Loyalhanna Fm. in central
Pennsylvania (see Fig. 2 of the Introduction to this
volume).

The wedge obtains its thickest expression in
eastern Pennsylvania where up to 3500 m (11,400 ft)
of predominately alluvial deposits are preserved (Fig.
9a). This accumulation can be explained by the
combined effects of the load distribution (Fig. 9b) and
the tectonic subsidence of the Michigan and Illinois
intracratonic basins by about 830 m and 210 m,
respectively. Although the reason for the subsidence
of the intracratonic basins is not properly understood,
the regional isopach distributions cannot be explained
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FIGURE 10 Isopach maps of observed (panel a) and predicted (panels b and ¢) sediment distribution for the

Lower Devonian (contours in feet).

Panel (d) shows the sediment accumulation rate for Pennsylvania and

adjacent regions. The numbered grids in panel (b) are the thicknesses (km) of the overthrust loads necessary

to produce the model subsidence in the Appalachian basin.
restored chemical sedimentation and marine conditions.

sandstone sediments.

Brick and tilda patterns denote observed and
Dash and dot patterns denote observed shale and
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FIGURE 10 (cont.)

without including them. Figure 9b shows the model
isopach distribution at the end of deposition, whereas
Figure 9c shows the predictions of the present
distribution (after uplift and erosion), which agrees
quite closely with the observations (Fig. 9a). The
model predicts that some erosion occurred before the
Alleghanian orogeny but that the majority occurred
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FIGURE 11 Isopach maps of observed (panel a) and predicted (panels b and c) sediment distribution for the
Panel (d) shows the sediment accumulation rate for Pennsylvania and
adjacent regions. The numbered grids in panel (b) are the thicknesses (km) of the overthrust loads necessary

Middle Devonian (coutours in feet).

to produce the model subsidence in the Appalachian basin.
restored chemical sedimentation and marine conditions.

sandstone sediments.
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between the Permian and present (Beaumont et al.,
1988). Erosion predominates on the arches and domes
(Figs. 7 and 6c), reflecting the process of stress
relaxation and uplift of those regions due to the
superposition of the peripheral bulges. It is important
to note that a purely elastic model of the lithosphere
cannot correctly reproduce this pattern of erosion.
Sediment accumulation rates (as indicated by the
thickness remaining per unit time) varied dramatically
over the interval of the Acadian orogeny (Figs. 10d,
11d, and 12d). In the ZEarly Devonian two
accumulation centers existed in the central
Appalachians, with the northern receiving carbonate
sediment at a rate of 15 m/Myr (Fig. 10d). This
pattern (Oliver et al., 1967), which was originally
established in the Upper Silurian (Colton, 1970),
cannot be explained by the flexural model if
sedimentation completely filled the foreland basin. It
is in cases like this that geodynamic models can point
to problems requiring a solution. That the flexural
model is so successful for other intervals, when there
was a large clastic influx into the basin, lends
credence to our faith in the model for this Early
Devonian interval, vyet two closely separated
depocenters (Fig. 10a) should be flexurally connected
along strike (Figs. 10b and 10c). The obvious
explanation is that in central Pennsylvania the basin
remained underfilled with paleobathymetry as large as
50 m at the end of the interval. This can be
substantiated in part because at the end of Deerpark
Age a sizable sea level drop occurred producing the
Wallbridge Discontinuity (Dennison, 1985). This
discontinuity is absent in western Maryland, northern
West  Virginia, and southwestern and eastern
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Pennsylvania, suggesting that the sea was deep there
at the end of Deerpark time.

By the Middle Devonian, accumulation rates had
increased to a maximum 50 m/Myr along the
southwestern border of the basin in response to
Acadian overthrusting, whereas on the west side of
the basin in Ohio rates remained constant (Fig. 11d).
The model results (Figs. 11b and 1lc) that best match
the observed thicknesses (Fig. 1la) indicate that there
was no great increase in the rate of loading between
the Early and Middle Devonian, although the load
distribution may have migrated somewhat to the north.
The increase in sedimentation is most likely a
response to the initiation of Acadian mountains
outboard of the central Appalachians which provided a
good source of detrital sediments to this part of the
basin. That these sediments most probably filled the
basin completely is reflected in the flexural shape of
the preserved isopach (Fig. 11c¢).

In the Late Devonian, accumulation rates increased
by almost fourfold in the east and an order of
magnitude in the west (Fig. 12d). As expanded upon
below, these rates overwhelmed subsidence rates and a
subaerial alluvial plain was created that prograded
westward. The preserved sediment distribution is one
of the most convincing pieces of evidence in favor of
a flexural model of the Appalachian foreland basin in
which loads up to 10 km thick were overthrust in the
vicinity of what is now southern New York, New
Jersey, and Maryland. That the preserved isopach is

asymmetric along strike with respect to this
depocentre suggests that there was also loading
further south within the orogen (compare Figs. 12a
and 12¢).

There is little doubt that the clastic sedimentation
covered the whole of the Eastern Interior as far
south as Tennessee (Fig. 12b). Preserved clastic
sediments from this time within the intracratonic
basins is further evidence that the arches and domes
were flexurally depressed. If this interpretation is
correct, the initial, or loading, flexural wavelength of
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the lithosphere under the Eastern Interior must have
been sufficiently large to couple the intracratonic
basins into the Appalachian foreland basin as shown
in Figure 12b.

Middle Devonian Depositional History. Immediately
following deposition of the Tioga metabentonite,
organic rich, black and grey shales (Marcellus Shale)
spread westward through the epeiric sea into Ohio at
the same time that 300 m of siltstones and sandstones
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of the Mahantango Formation were deposited in eastern
Pennsylvania (Fig. 13). These units are interpreted by
Kaiser (1972) to be the result of a delta complex that
prograded northwestward from Maryland into eastern
Pennsylvania during upper Middle Devonian time. The
shoreline at the time of maximum progradation in the
Givetian Stage is given in Figure 14 as number 3.
This first phase of shoreline progradation, was
terminated by a eustatic (?) sea level rise, the
Taghanic onlap, which transgressed the shoreline to
position 4 (Fig. 14) and deposited the Tully Limestone
Mbr. (Fig. 13), a deep water micrite interbedded with
black shale.

Late Devonian Depositional History. By the Late
Devonian, the Appalachian orogen was in the subtropics
(Fig. 8) where southeasterly trade winds created a
tropical climate with alternating wet and dry seasons
restricting plants to the fringes of rivers, lakes, and
the shoreline, and promoting redbed formation. A
large epeiric sea, the Catskill Sea of Woodrow and
Sevon  (1985), <covered the eastern interior.
Increasingly higher rates of clastic sediment flux to
the basin quickly prograded the shoreline of this sea
back to the west (Fig. 14, position 5), producing the
famous Catskill regressive sequence (Figs. 13, 14, and
15). At most stratigraphic sections in Pennsylvania
(Fig. 15), the sequence starts with deposits of distal-
basin dark shales, passes upwards into grey turbidites
(eg., Brallier Fm. of Day 3, Site 2, Outcrop 1) of the
shelf slope rise or clinoform (Woodrow, 1985), that in
turn give way to upper slope and storm-dominated
shelf facies (eg., Loch Haven and "Chemung" Fms. of
Day 3, Site 2, Outcrop 2)(Slingerland and Loule, in
press). Lying above the shelf facies are marginal
marine deposits (eg., Irish Valley Mbr., Catskill Fm. of
Day 3, Site 2, Qutcrop 3) that, in Pennsylvania (Fig. '

FIGURE 14 Devonian shorelines in the central

Atlantic  states. Dotted line encompasses the
preserved Devonian strata; dashed lines are inferred
from clastic wedges preserved further into the basin.
Variation in age along any one shoreline can be
millions of years: I = early Onesquethawan (377 Myr);
2 = late Onesquethawan; 3 = Tioughniogan; 4 =
Taghanican; 5 = Finger Lakesian; 6 = Cohocton; 7 =
early Bradfordian; 8 = late Bradfordian (346 Myr)
(modified from Dennison, 1985).

15), consist of two tide-dominated deltaic depocenters

separated by the extensive tidal flat facies of a muddy

shoreline (Rahmanian, 1979; Williams, 1985; Warne,

1986; Slingerland and Loule, in press). Petrographic

differences among the depocenters to the south

(Kirchgessner, 1973) indicate variations in the source
A

—
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COLUMBUS LS
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FIGURE 13 Stratigraphic cross-section of the
Devonian System from the eastern foreland basin
edge in New York to the Findlay-Algonquin Arch in
the west (modified from Potter et al., 1979).
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terrain from a greenschist facies provenance to the
south to a higher grade or more igneous provenance
to the north. The shoreline deposits are overlain by
fluvial deposits of a vast alluvial plain that extended
east to the Acadian Highlands. Low on the plain the
rivers meandered (Bridge and Gordon, 1985) whereas
higher on the plain the streams were low sinuosity
meandering or braided (eg., Day 3, Site 2, Outcrop 4
and Day 5, Site 1 of Duncannon Mbr., Catskill
Fm.)(Sevon, 1985; but see Bridge and Nickelsen, 1986
for an alternative view). The locations of the major
streams across Pennsylvania were relatively fixed
(Williams, 1985; Slingerland and Loule, in press; Sevon,
1985), probably by topography in the source region or
basement tectonics.

During early and middle Famennian time the
Catskill alluvial plain prograded an additional 167 km
(100 miles) across the central Atlantic states (Fig. 14,
shoreline 6), reaching its maximum westward position
(shoreline 7) in late middle Famennian time. The
world’s first commercial oil well was drilled by Col.
Edwin Drake in offshore shelf sandstones of this age
(Fig. 13, "Venango Qil Sands"). Subsequently, a wide-
spread and rather abrupt marine transgression overran
the alluvial plain for 80-160 km (50-100 miles)
(shoreline 8), depositing the Riceville Shale and
Oswayo Fm. The time-equivalent alluvial rocks (eg.
lower two-thirds of the Pocono [Rockwell] Fm. in
outcrop 4 of Stop 3) have lost their red color but
otherwise show little evidence of this change in base
level. In fact, most interpretations of depositional
environments in this interval (Rahmanian, 1979; Berg,
1981; Williams, 1985) imply that westward progradation
of the steeper, wupper alluvial plain continued
uninterrupted, suggesting the transgression was
primarily eustatic in origin. This is substantiated by
its effects as far away as the Canadian Rockies
(Dennison, 1985).

Early Mississippian Depositional History. The last
phase of Acadian deposition is represented by rocks
of the Pocono Fm. of Pelletier (1958) (Fig. 16). The
braided alluvial plain (eg., Burgoon Ss. of Day 3, Site
2, Outcrop 5) depicted in Figure 16 in Kinderhookian
time, prograded westward again, displacing shallow
marine facies (eg., Shenango Fm. and Berea Ss.).
Average accumulation rates across southern
Pennsylvania were more similar to the Middle than
Upper Devonian however, being only 49 m/Myr in the
east and 15 in the west (Pelletier, 1958). This
decrease in accumulation rate defines the end of the
Acadian orogeny and its effects.

Alleghanian Orogeny

The Permo-Carboniferous Alleghanian orogeny is
characterized by a molasse sequence in the foreland,
thrusting and folding of the whole orogen but
especially the foreland in the southern and central
Appalachians, and regional metamorphism and
plutonism along the entire eastern margin of the
Appalachians. Its earliest effect in the central
Atlantic region was a warping of the foreland basin in
Meramecian time with uplift and erosion inboard,
renewed sediment influx outboard, and development of
a marine embayment in between. Deposition of shales
in Arkansas also signals the onset of thrusting in the
Ouachita part of the orogen. As discussed below,
deformation outboard of the fold and thrust belt must
have taken place continuously into the Permian to
provide the necessary loads for the foreland.
Numerous S-type granitic plutons were emplaced in
the eastern Piedmont from mid-~Carboniferous to
Permian time (Hatcher, 1987; Jamieson and Beaumont,
1988) and most seem to be post-tectonic (Rodgers,

FIGURE 15 One-point perspective sketch of Devonian shoreline 6 (Fig. 14) showing the paleogeography,
sedimentary paleoenvironments, and deposits across Pennsylvania. Two major meandering river systems are
inferred to have drained the Acadian Highlands (interpreted as thrust sheets), and debouched into the Catskill
Sea through trumpet-shaped, tidally influenced estuaries. Offshore, wind-driven geostrophic flows transported
sediment plumes to the southwest, forming shelf sand sheets with ridges on an otherwise muddy shelf. Dilute
silty turbidity currents carried sediments onto the basin floor.
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FIGURE 16. Paleogeography of middle Atlantic states

during the Kinderhookian (Early Mississippian).
Acadian Highlands to the east fed braided streams
draining westward across Pennsylvania, producing the
Pocono (Rockwell and Burgoon) Fm. The Cincinnati
(Findlay-Algonquin) Arch, uplifted by lithospheric
relaxation, fed a delta system which prograded south-
southeast. Hydrocarbon reservoirs (shown in black)
were formed in the narrow seaway (modified from
Pelletier, 1958, and Donaldson and Shumaker, 1981).

1987). Folding in the preserved part of the fold and
thrust belt of Pennsylvania did not occur prior to
early Permian however, as evidenced by the fact that
early Permian strata in western Pennsylvania are
concordantly folded. These facts suggest that a wave
of deformation and heating moved cratonward over
the interval from mid-Mississippian to late Early
Permian. The orogeny in the vicinity of Pennsylvania
was completed by the end of Early Permian time
because a remnant magnetization on fold limbs in
central Pennsylvania is independent of bedding attitude
and follows the cratonic polar wander path after that
time (Van der Voo, 1988). Elsewhere in the
Appalachians the Alleghanian orogeny probably ended
by the end of the Permian because the plutons are no
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younger than 260 Myr (Jamieson and Beaumont, 1988).

Alleghanian deformation in the foreland is
characterized by thin-skinned thrusting towards the
continent (Rodgers, 1983, 1987; Hatcher, 1981; Mitra,
1986)(Fig. 17). All along the central and southern
portions of the orogen, portions of the western
Piedmont and Blue Ridge crystalline rocks moved .
westward, acting as a plunger to deform the
sedimentary rocks of the foreland (Fig. 18). There
seems little doubt that the ultimate cause was the
final collision of Laurentia and Gondwana. The result
in the foreland is the classic fold and thrust belt we
see today, exhumed by up to 12,000 m (40,000 ft) of
Mesozoic and Cenozoic erosion (Fig. 19).

Alleghanian Basin Fill

We consider the Alleghanian basin fill to commence
with deposition of the Loyalhanna Fm. or Mauch
Chunk equivalent and end sometime in the Permian.
Because the Permian section is partially eroded, the
total thickness of Alleghanian molasse is unknown. In
eastern Pennsylvania at least 5-7 km of additional
overburden are required to account for the level of
organic metamorphism of the anthracite (Levine, 1983;
1986), sediment bulk densities and porosities (Paxton,
1983), fluid inclusion paleopressures (Orkan and
Voight, 1985), and fission track thermochronometry
(Beaumont, et al.. 1987). The bulk of this may have
been tectonically emplaced however. In western
Pennsylvania where overthrusts are not a factor, the
moisture content of the coals indicates an additional
2400 m (8000 ft) of Permian strata (Beaumont, et al.,
1987). An estimated 2500 m maximum of preserved
Alleghanian fill in the Southern Anthracite Field of
Pennsylvania plus 2400 m of Early Permian strata
(now eroded), yields an accumulation rate of 196

m/Myr, similar to the highest rates of the Late
Devonian.
The model reconstruction of total Alleghanian

loading and molasse deposition in the Appalachian and
Arkoma basins (Fig. 20) is in agreement with data
from preserved sediments and reconstruction of eroded
section based on coal moisture content (Beaumont et
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FIGURE 17 Schematic cross-section based on surface geology and seismic data (where available). The
northwestward-directed folds and thrusts of the foreland (Valley and Ridge and Allegheny Plateau regions) are
due to Alleghanian orogenesis (modified from Hatcher, 1981).
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al., 1987). This reconstruction shows the scale of the
foreland basin at the end of the orogeny and the
magnitude of thrust loads which by this time were
concentrated in the southern Appalachians and the
region within and to the south of the Ouachita
mountains. The model assumes minimum tectonic
subsidence of the Michigan and Illinois basins of 160
m and 1115 m, respectively. Cumulative thicknesses
of overthrust loads required by the model to
reproduce the total foreland basin subsidence are
shown in Figure 18.

Late Mississippian Depositional History. The
foreland basin in the central Atlantic region
responded to Alleghanian orogenesis in early Late
Mississippian (Meramecian) time by subsidence along a
northeast-southwest axis across Pennsylvania, creating
a trough in which ftransgressive marine carbonates
(eg., Greenbrier Ls. of West Virginia and Loyalhanna
Fm. of Pennsylvania) were deposited (Fig. 21).
Simultaneously, the region to the northwest
experienced wuplift and became a source for the

. LOAD THICKNESS AND
OVERTHRUST POSITION

END ALLEGHANIAN
OROGENY

FIGURE 18 Interpretation of the cumulative model
loads (fine linre contours in km) in terms of
overthrusting and thickening in the Appalachian and
Ouachita orogens by the end of the Alleghanian
orogeny. The bold lines show the location of the
Bouguer gravity gradient in relation to the overthrust
loads. Note that the thickest loads are to the east
and south of this gradient. -Barbed lines show the
edge of basement involved thrust sheets and stippled
areas are the inferred mountainous regions. Fine
arrows illustrate the inferred advance of the thrust
front during the Alleghanian orogeny in the
Appalachian part of the orogen. The cross sections
are based on results from Stockmal et al. (1986) and
Stockmal and Beaumont (1987) and should be compared
with Figures 4 and 5.
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relationships among

Schematic
differentially resistant foreland strata, Alleghanian
folds, present geomorphology, and coal in the Southern
Anthracite Field. Days 5 and 6 will be spent in
Ashland and Pottsville.

FIGURE 19

trough. To the southeast, the orogenic source created
earlier, continued to supply sediments, and a delta
complex (Mauch Chunk Fm., Day 6, Site 1) built
northwestward. By the end of the Chesterian Stage
the Loyalhanna embayment was completely filled.
Continued uplift to the northwest allowed streams to
erode the Mauch Chunk margin soon after deposition
and transport the sediment along the basin axis to the
Kentucky region (Fig. 22). On the southeastern
margin of the basin where Mauch Chunk sedimentation
was continuous, approximately 1140 m (3800 ft) of
alluvial redbeds are preserved (Arkle, 1974), yielding a
maximum accumulation rate over the interval of 38
m/Myr.

The Mississippian sediment distribution can be
explained approximately by the two model timesteps

ALLEGHANIAN OROGENY \\
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FIGURE 20 Total Alleghanian orogeny isopach map.
Model prediction at deposition showing the cumulative
load thickness for the Pennsylvanian and Permian (km).
Contours of sediment isopach are in feet.
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FIGURE 21 Paleogeography of the middle Atlantic
states during the Meramecian (early Late Mississippian).
Continued relaxation of the forebulge allowed
transgression of the Loyalhanna sea into Pennsylvania
as the Acadian orogenic highlands continued to
downwaste, depositing the Mauch Chunk Fm. (modified
from Edmunds, et al, 1979).
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FIGURE 22 Paleogeography of the middle Atlantic
states during the  Chesterian (middle Late
Mississippian). Increased loading to the south (Fig. 24)
renewed uplift of the forebulge region, causing erosion
of previously deposited formations to the northwest as
Mauch Chunk alluvium continued to accumulate to the
southeast (modified from Edmunds et al., 1979).
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FIGURE 23 Isopach maps of observed (panel a) and predicted (panels b and c) sediment distribution for the

Lower Mississippian (contours in feet).

overthrust loads necessary to produce the model subsidence in the Appalachian basin.
denote observed and restored chemical sedimentation and marine conditions.
observed shale, and fine and coarse sandstone sediments.

dispersal directions.
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UPPER MISSISSIPPIAN ISOPACH

sediment dispersal directions.

given in Figures 23 and 24. Although more
subdivisions would be necessary to capture the
dynamics of evolution during this period, the change
appears to be the consequence of a southward
migration of the load distribution and uplift of and
erosion from the Findlay-Algonquin arch during an
interval of lithospheric stress relaxation.

The southward load migration from the Late
Devonian into the Mississippian meant that the areas

- of western New York and Pennsylvania became

progressively closer to the edge of the foreland basin

and, therefore, were more influenced by sediment -

influx from the uplifted arches (Figs. 12b, 23b, and
24b). The Bedford Delta (Fig. 16) is the first
evidence of reworked cratonic sediments, presumably
from a source that could have been as proximal as
the vicinity of southern Ontario by the Kinderhookian
to Osagean transition. During the Meramecian and
Chesterian the edge of the basin retreated into
Pennsylvania (Figs. 24b and 21), and older
Mississippian sediments were uplifted, exposed, eroded,
and reworked into the southeasterly retreating basin.
Pennsylvanian Depositional History. Commencing in
latest Mississippian time in eastern Pennsylvania and
continuing through the Middle Pennsylvanian, a wedge
of braided stream gravels (eg., Pottsville Fm., Day 6,
Site 1) flooded northwestward over the Mauch Chunk
delta complex from a south-southeastern source
terrane (Fig. 25). Although this has traditionally been
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FIGURE 24 Isopach maps of observed (panel a) and predicted (panels b and ¢) sediment distribution for the
Upper Mississippian (contours in feet). The numbered grids in panel (b) are the thicknesses (km) of the
overthrust loads necessary to produce thé model subsidence in the Appalachian and Arkoma basins. Brick and
tilda patterns denote observed and restored chemical sedimentation and marine conditions. Dash and dot
patterns denote observed shale, and fine and coarse sandstone sediments. Large arrows show the inferred major
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FIGURE 24 (cont.)

A

interpreted as evidence of dramatic orogenesis
immediately to the southeast (cf. Meckel, 1967), the
maximum accumulation rate at Pottsville, PA was only
19 m/Myr, and clast and rock fragment lithologies
suggest the source terrain was composed primarily of
sedimentary and low grade metamorphic rocks
(Meckel, 1967; Houseknecht, 1979). The flexural
modelling presented below (Fig. 27), suggests only
modest additional thrust loads were present outboard
of Pennsylvania during the Early Pennsylvanian. As
described at Site 1 on Day 6, an alternative
explanation for these gravels is a change to a wetter
climate and higher discharge, perennial streams
draining the Virginia orogenic belt.

At approximately the same time, gravels -derived
from older Paleozoic sedimentary rocks to the north
filled incised stream channels along the northern tier
of Pennsylvania (Meckel, 1967). This was apparently
in response to subsidence below base level caused by
crustal loading in Virginia and further south and is
the first evidence of the type of transition in loading
between that shown in Figures 27 and 28.

By early Desmoinesian (Middle Pennsylvanian) time,
subsidence and eustatic sea level rise (Heckel, 1986)
were sufficient to flood western Pennsylvania (Figs.
26 and 28), creating broad delta plains conducive for
the formation of coal swamps (eg., Allegheny Group,
Day 4). At the same time, alluvial plain slopes
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FIGURE 25. Paleogeography of the middle Atlantic states during the earliest Pennsylvanian. Major loads to the
south-southeast (Fig. 27) depressed Pennsylvania and created differential relief such that a flood of gravels
(Pottsville, Olean, Sharon Fms.) swept over the region from the north as well as the southeast (modified from

Meckel, 1967).

Earliest Pemnsylvanian
Paleoenvironments
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FIGURE 26 Paleogeography of the middle Atlantic
states during the late Middle Pennsylvanian. As the
overthrust loads migrated northward (cf. Figs. 27 and
28), a narrow seaway returned to the area and the
alluvial plain spread further northwestward from the
orogenic highlands (modified from Donaldson and
Shumaker, 1981).
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FIGURE 27 Lower Pennsylvanian isopach map
(contours in feet). Model prediction at time of
deposition showing the load thicknesses (km)

necessary to produce the model subsidence in the
Appalachian and Arkoma basins. Dash and dot
patterns denote observed and restored shale, and fine
and coarse sandstones. Light and dark shading
represent coastal plain and coal swamp environments.
Large arrows show the inferred major sediment
dispersal directions. Fine arrows show the migration
of the peripheral bulge during the advance of the
overthrust loads in the Ouachita orogen.
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FIGURE 28 Upper Pennsylvanian ispoach map
(contours in .feet). Model prediction at time of
deposition showing the load thicknesses (km)
necessary to produce the model subsidence in the
Appalachian and Arkoma basins. Dot pattern denotes
sandstones. Light and dark shading represent coastal
plain and coal swamp environments. Large arrows
show the inferred major sediment dispersal directions.

declined, probably due to increased loads and
subsidence near the source, and thick peat swamps
developed as close to the source terrane as Pottsville,
PA (eg., Llewellyn Fm., Day 5, Site 2, and Day 6, Site
1). :
Throughout the Upper Pennsylvanian into the
Permian, base level oscillated, producing the famous
cyclothems of the coal measures (Busch and Rollins,
1984; Heckel, 1986). Accumulation rates increased,
presumably in response to increased thrust loading to
the east. By the time the youngest preserved strata
were deposited, accumulation had so outstripped
subsidence, that the mnortheastern end of the
Appalachian foreland basin was a subaerial alluvial
plain stretching from its southeastern source terrane
to the Cincinnati Platform. .

The regional setting of Pennsylvanian subsidence
and sedimentation can be explained in terms of the
flexural model results (Figs. 27 and 28). Like the
Mississippian, more subdivisions would be necessary to
represent details, but the pattern is apparently
explained by the initiation of substantial overthrusts
along the southern rim of North America and the
progressive migration of overthrusting northward into
Virginia during the middle and later part of the
Pennsylvanian. The shift in the locus of loading from
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ALLEGHANIAN DISPLACEMENTS: APPALACHIAN FORELAND
AND ADJACENT STRIKE-SLIP TERRANE

@ LACKAWANNA PHASE
@ MAIN PHASE

STUDY AREA

MAIN PHASE: ) ||
TERRANE AND TRENDSp, '!

\\ o0
AR
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FIGURE 29. a) Directions of layer parallel shortening
during the Lackawanna (Pennsylvanian?) and main
(Permian?) phases of the Alleghanian orogeny. b) and
c) Tectonic interpretation of deformation within the
Appalachian orogen during these phases (modified from
Geiser and Engelder, 1983). The inferred directions
of thrusting should be compared with the positions of
overthrust loads shown in Figures 24, 27, 28, and 30.

that of the Late Mississippian causes uplift and
exposure of sediments on a broad east-west peripheral
bulge (Fig. 27), which explains the increasing
importance of this region as a source of reworked
sediments and the development of an unconformity
over this area.

The northward sweep in the development of the
unconformity can be attributed to the migration of
the peripheral bulge at the time of rapid convergence
between the loads and the continental margin
(Beaumont et_al, 1988; Ettensohn and Chestnut, sub.).
The development of the unconformity in this southern
region therefore parallels that of the Ordovician post-
Beekmantown Knox unconformity in the central
Appalachian foreland north of Alabama. During the
early stages of convergence of overthrusts on a rifted
margin, these loads migrate large distances laterally
as subduction continues. The peripheral bulge
therefore sweeps across a much larger area than in
subsequent orogenies at the same margin where the
loads tend to grow in situ by shortening and
thickening of terranes that have already accreted.

Erosion in central and northwestern Pennsylvania
in the Early Pennsylvanian is therefore attributed to
uplift of the Findlay-Algonquin arch during stress
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relaxation that continued from the Mississippian
compounded with the superimposed peripheral bulge
from the newly arrived southern loads. Although
eustatic sea level changes cannot be entirely dismissed
as the cause of the Pennsylvanian unconformity, the
tectonic-flexural model provides an internally
consistent explanation.

Upper Pennsylvanian sedimentation in the central
Appalachian basin is attributed to the completion of
the Lackawanna phase of the Alleghanian orogeny
(Fig. 28). Deformation caused by thrusting from load
emplacement in central Virginia also agrees with the
explanation of layer parallel shorting during the
Lackawanna phase (Geiser and Engelder, 1983)(Fig. 29)
which requires northwesterly directed compression in
Pennsylvania. This phase of layer parallel shortening
should be contrasted with the later, "main" phase
related to Permian compression and loading (Figs. 29
and 30) when the compression was directed towards
the west. Although all of the loading of this later
phase cannot be unequivocally termed Permian,
structural, sedimentological, coal metamorphic and
moisture, and fission track data (summarized in
Beaumont et _al., 1987) require a further stage of
loading which to first order is satisfied by the model
(Fig. 30).

The main phase of Early Permian compression
deformed the foreland itself, thus ending its life as a
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sedimentary basin. Significant erosion at a rate of
200 m/Myr started almost immediately as evidenced by
the fact that Late Triassic rift basin sediments overlie
Cambro-Ordovician carbonates in southeastern
Pennsylvania (see Manspeizer and Huntoon, this
volume, for more details). By comparison with
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FIGURE 30 Permian isopach map (contours in feet).
Model prediction at time of deposition showing the
load thicknesses (km) necessary to produce the model
subsidence in the Appalachian and Arkoma basins.
Shading represents regions deformed by thrusting in
which the extra thickness of sediment may, in part,
be occupied by older sediments that were shrotened

and thickened during thrusting.

denudation rates as functions of relief for present-day
mountain belts in similar latitudinal (and therefore
climatic) settings, and given the thickness of the
loads (Fig. 30), the ancestral Appalachians must have
had considerable relief.
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