WIND/WAVE AND TIDAL PROCESSES ALONG THE UPPER DEVONIAN
CATSKILL SHORELINE IN PENNSYLVANIA, U.S.A.
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ABSTRACT

To better determine the relative contributions of wind/wave versus tidal processes along the westward prograding Catskill shoreline of eastern North
America, seven stratigraphic sections comprising the marine-nonmarine transition were measured along a NNE-SSW line across central Pennsylvania
over a distance of 279 km. The interval includes the upper Lock Haven Formation and equivalents up to the base of the Sherman Creek Member of the
Catskill Formation. Each section, excepting Entriken, yielded a Diaphanospora reticulata palynomorph assemblage, implying that six of the sections are
isochronous and of middle Frasnian age. Thus, the shoreline lay along the NNE-SSW trend of the outcrop belt. The sections contain approximately
similar vertical sequences, starting with thick intervals of olive-grey hackly mud shales with a sparse brachiopod fauna that pass by way of hummocky-
stratified, very fine sandstones into intervals up to 25 m thick of fine, often large-scale trough or planar cross—stratified sandstones. This assemblage is
interpreted as a shelf sand ridge complex and associated inter-ridge seafloor constructed by wind/wave-driven flows. These are separated from shoreline
deposits by a mixed mud shale, bioturbated fine sandstone interval interpreted as shoreface deposits. The shoreface deposits are replaced landward by
either progradational sequences of transgressive bioturbated shoreface sands overlain by tidal flat muds, or by fining upwards sequences composed in
ascending order of large-scale trough or planar cross-stratified fine to medium grained channel-filling sandstone, inclined heterolithic strata with flaser
or lenticular bedding and asymmetrical ripple forms, and red laminated siltstones and mudstones with mudcracks and root traces. This sequence is
interpreted as the product of tidal channel migration through muddy tidal flats. These interfinger with large-scale cross-stratified quartzose sandstone
bodies interpreted as estuarine sand shoals. The tidal features are interpreted to indicate at least a mesotidal range for the shoreface and inshore
environments. Thus, the Catskill shoreline across Pennsylvania was shaped by a mixture of offshore wave/wind and onshore tide-dominated

sedimentation.

INTRODUCTION

Recent studies of ancient shoreface and inner shelf
deposits have revealed numerous examples of continental
shelves that defy classification by process. Whereas for
convenience we divide continental shelves by hydraulic
regime into tide- or wind/wave-dominated, many shelf
deposits imply that both processes operated either simul-
taneously at different sites or at different times. For exam-
ple, the Doulbasgaissa Formation (Banks, 1973), the Jura
Quartzite (Anderton, 1976), the Cretaceous Moosebar-
Gates (Leckie and Walker, 1982), Viking (Leckie, 1986), and
Milk River (McCrory and Walker, 1986) Formations of
Alberta, the Tocito Sandstone Lentil of New Mexico
(Tillman, 1985), and the Late Jurassic Curtis Sandstone of
Utah (Kreisa and Moiola, 1986), all show evidence of spa-
tially or temporally mixed tidal and wind/wave processes.
Nowhere is this better illustrated than in the Upper Devo-
nian nearshore-marine facies of the Catskill shoreline in
Pennsylvania. The result has been the bewildering thicket of
interpretations reviewed below.

In this study we have attempted to define the pal-
eogeography and sedimentary environments of a Catskill
shoreline as it existed across Pennsylvania during an inter-
val of Frasnian time and relate the occurrence and intensity
of tidal and wind/wave processes to it. We hope to show
that tidal processes dominated the foreshore and inshore at
the same time that wind/wave (especially storm) processes
dominated the shoreface and inner shelf. The absence of
high wave energy facies in the upper shoreface and fore-
shore is attributed to the infrequency of the storms relative
to a low wave energy background, and to protection by

offshore sand ridges. The general trend of the coast was
NNE-SSW as predicted by earlier workers and net shelf
sediment transport was to the south, apparently by wind-
driven geostrophic currents.

PRESENT STATE OF KNOWLEDGE

Tt has been nearly three—quarters of a century since
Joseph Barrell, in three landmark papers (1913, 1914a,
1914b), presented the idea of a great Upper Devonian Cat-
skill delta in the Appalachian geosyncline of Pennsylvania
and New York. Prior to his studies, Stevenson (1891) and
others held the opinion that the Catskill and lower forma-
tions were shore and offshore deposits of the Interior Con-
tinental Sea. The present view of Upper Devonian
sedimentation in Pennsylvania, well summarized in Wood-
row and Sevon (1985), is one of a westward prograding
shoreline complex with possibly as many as three identifia-
ble deltaic depocentres (Dennison and Dewitt, 1972;
Rahmanian, 1979; Smith and Rose, 1985; Williams and
Slingerland, 1986; Warne, 1986), one of which occupied the
center of the state during Frasnian time (Figs. 1 and 4). The
depocentres were fed by rivers that arose in the Acadian
Highlands to the east (present coordinates), and flowed
westward across a proximal braid plain (Sevon, 1985; but
see Bridge and Nickelsen, 1986 for an alternative view) onto
a vast low gradient delta plain. Just across the border in
New York state, the delta plain rivers are documented to
have flowed in low sinuosity, perennial, laterally-migrating
single channels (Bridge and Gordon, 1985). Bankfull dis-
charges calculated at four cross sections thought to be
within about 10 km of the shoreline ranged from 40 to 115
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m3-sec-l. Although similar small rivers are recognized in
eastern Pennsylvania (Sevon, 1985), by the time the delta
plain had prograded through central Pennsylvania, the
rivers were fewer and larger (Rahmanian, 1979; Williams,
1985). A low paleolatitude (less than 20 degrees) created a
tropical climate with alternating wet and dry seasons. Plants
were restricted to the fringes of rivers, lakes, and the
shoreline (Woodrow, 1985; Banks et al., 1985).

There is much less agreement on the nature and hydrau-
lic regimes of the foreshore, shoreface, and offshore. The
shoreline was oriented roughly northeast-southwest, but
the precise geometry at any one time is still unclear. The
often cited paleoshoreline of Willard (1934, 1939), based on
the eastward disappearance of Cyrtospirifer, was con-
structed by assuming that the first appearance of the
brachiopod and nonmarine strata are not time-trans—
gressive. This apparently is not true (Woodrow, 1985). Den-
nison (1985) located four shorelines across Pennsylvania

Fig. 3. Stratigraphic correlation chart adapted from Berg et al. (1983),
giving approximate positions of measured sections along a NNE-SSW
transect across middle Pennsylvania. Vertical dashed line denotes
approximate boundary between formations. Measured intervals have
been located by lithostratigraphic criteria only; see text for details.
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Fig. 4. Location of Catskill Shoreline during ovalis-bulliferus time as
determined by this study (stippled area) compared to the shoreline of
Willard (1939). Also noted are the locations of two depocentres deter—
mined by those authors from increased percentage of sandstones.

during the Upper Devonian using the shape and lithology of
terrigenous clastic wedges. The geometries are generalized
however, and their accuracy can’t be evaluated.

Numerous interpretations of shoreline environments
have been presented, some mutually contradictory, includ-
ing tide-dominated deltas (Rahmanian, 1979; Williams,
1985; Slingerland, 1985; 1986), tidal flats (Woodrow and
Fletcher, 1967; Humphreys and Friedman, 1975; Rahma-
nian, 1979), estuary or tide-dominated delta distributaries
(Bridge and Droser, 1985), barrier bars (Allen and Friend,
1968), and a quiet muddy shoreline (Walker, 1971; Walker
and Harms, 1975). Most agree the coastal wave climate was
of low energy but estimates of the tidal regime range from
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microtidal (Woodrow, 1985) to high mesotidal (Slingerland,
1986).

The shoreface (low tide line to fair weather wave base)
and inner shelf (shoreface to about 30 m water depth) have
not been characterized as such. Walker (1971) concluded
that the shoreline generally was muddy in east-central
Pennsylvania whereas Friedman and Johnson (1966), Sut-
ton et al. (1970), Glaeser (1970), and Krajewski and Williams
(1971) refer to coastal margin sands in northeastern Pennsyl-
vania and New York. McGhee and Sutton (1985) suggest a
more complex shelf in New York during intervals of the
Frasnian Stage, with delta-front sand bars protecting a
finer grained delta platform. This interpretation was
applied earlier to the Appalachians south of Pennsylvania
by McGhee and Sutton (1981). An alternative view (Goldring
and Bridges, 1973; Goldring and Langenstrassen, 1979;
Woodrow and Isley, 1983) is that these more distal sands are
of storm-wave origin. The latter point of view has been well
documented and amplified by Craft and Bridge (1987) for
hummocky sequences near the base of the Chemung Mag-
nafacies at Waverly, New York. In Pennsylvania, elongate
fine sandstone pods of the First Bradford Fm. are inter-
preted as inner to mid-shelf sandbars of uncertain origin
(Murin and Donahue, 1984).

STRATIGRAPHIC SETTING

The rocks described here are exposed in seven sections
roughly along paleodepositional strike (Figs. 2 and 4), and
span the Upper Devonian marine-nonmarine boundary
between the Chemung and Catskill Magnafacies. Figure 3
places the sections in the chrono- and lithostratigraphic
framework of Berg and others (1983), based on
lithostratigraphic criteria alone. Figure 3 suggests that the
south—southwest sections may be younger, but the pal-
ynological dating described below does not substantiate
this.

PaLyNnoLoGIcAL DATING

Twenty-three silty shales were sampled at the horizons
marked in Figures 5-11 and processed for palynomorphs.
Sixteen were analyzed by Prof. A. Traverse and seven by
one of us (JPL) using standard procedures of the Pal-
ynological laboratories of The Pennsylvania State Univer-
sity. The assemblages for each sample were plotted on the
range chart recently compiled for the Devonian System of
Canada (Richardson and McGregor, 1986) relating pal-
ynomorphs to the existing conodont zones. Although many
forms are new and still under investigation, all of the sec~
tions except Entriken (5) (Fig. 9) yielded a Diaphanospora
reticulata assemblage from at least one sample, thus placing
them in the ovalis-bulliferus spore zone, that is, the middle
two-thirds of the Frasnian Stage. Samples from the bases of
the Port Matilda (4) (Fig. 8) and Everett (7) (Fig. 11) sections
and all of the Entriken section yielded slightly older pal-
ynomorphs.
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These are generally older dates than those of previous
chronostratigraphic work in the area. The dark grey shales
at the base of the Franklindale (1) section (Fig. 5) and at
Tioga (2) (Fig. 6) are correlated by Woodrow (1981) based on
physical criteria, to the Dunkirk Shale (Rickard, 1975), in
which case the rocks above would be of Famennian age.
(But note that this is not the interpretation of Berg ef al.
(1983) in Fig. 3 for the NNW column). Also, Warne (1986)
traced the Minnehaha Springs member of the Scherr For-
mation to sections near Port Matilda (4) and Jersey Shore
(3), placing it approximately 660 m below the marine-non-
marine transition. It is thought to be an isochronous unit at
the base of the Cohocton (Chemungian) stage, that is, mid-
dle Frasnian, in which case the rocks of the transition stud-
ied here should be much younger. Until the situation is
clarified, the only point we will make is that, except for
Entriken, the sections are, for the most part, isochronous.
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PALEOGEOGRAPHY OF THE SHORELINE

Based upon these palynological dates, the shoreline
during Diaphanospora reticulata (middle Frasnian) time as
indicated by the first occurrence of mudcracked and rooted
rocks, probably occupied the cross-hatched area in Figure
4. We can be certain it was west of locations 5 and 7 because
the first subaerial facies are older there, but elsewhere the
whole marine-nonmarine transition zone falls within this
range. This is a disappointing precision; perhaps as new
palynomorphs are identified, the dates can be refined.

To provide additional information we measured the
orientation of wave ripple crests on the tops of sandstone
beds subjacent to (offshore from) the first subaerial facies.
The assumption is that these reflect the crestal orientation
of water surface waves in the shallow foreshore. These
waves in turn will have been refracted to near paralielism
with regional bathymetric contours. The results (Fig. 13)

Slingerland and Loulé

lend support to the shoreline geometry of Figure 4. The
morphology also is similar to Willard’s (1939) and Warne’s
(1986) shorelines in trend although this may be an artifice of
the outcrop distribution.

DESCRIPTION AND INTERPRETATION OF STRATA

Upper Devonian rocks of the study area have been
subdivided into 12 monolithic and 4 heterolithic facies and
grouped into the genetic sequences presented in Figures
5-11. These are discussed in order from most seaward to
most landward.

SHELF SAND RIDGE COMPLEX

This environment is represented in decreasing propor-
tion by: 1) reddish brown-weathering, large scale trough or
planar cross-bedded, fine to medium grained sandstone in
beds up to 0.5 m thick, recording strong flows (greater than
0.5 m/sec! for this grain size) either offshore as at Frank-
lindale (1) (Fig. 5) or alongshore as at Tioga (2) (Fig. 6); 2)
light grey-weathering massive to planar-bedded, fine
grained sandstone; and 3) thin interbeds of wavy and
flasered very fine sandstone (Fig. 12A and B). Wave ripples
and mud drapes are common on bedding surfaces.
Brachiopods and bivalves are scattered throughout and
occasionally concentrated in coquinites, the beds are mod-
erately bioturbated, and trace fossils are of the Cruziana
and Skolithos ichnofacies. This facies assemblage occurs in
all the sections except Port Matilda (4) and Everett (7).

We interpret this facies assemblage as an offshore sand
ridge, perhaps formed by offshore-directed geostrophic or
tidal flows (Fig. 13), similar to the Shannon Sandstone and
others reported from the Upper Cretaceous of Wyoming
(Tillman and Martinsen, 1984). Rahmanian (1979), Ehrets
(1981), and Craft and Bridge (1987) have described similar
sandy sequences in these or equivalent units to the north,
but suggested delta-lobe progradation and abandonment as
a possible cause. We prefer the growth, migration, and
abandonment of sand ridges on a generally muddy shelf
because these sandstones are overlain by landward mud-
rich deposits, only one (Entriken) contains channels, and
because one (Tioga) possesses shore-parallel flow indica-
tors.

RIDGE-MARGINS

Often occurring gradationally above or below the thick
sands interpreted as a shelf sand ridge complex are light
olive grey-weathering interbedded silt shale, siltstones, and
fine-grained sandstone with the sandstone predominating.
The sandstones commonly display a vertical sequence com-
mencing with a sharp sole-marked base overlain by pockets
of coquinite and quartz pebbles, hummocky cross-strat-
ified or wave ripple cross-laminated and flasered fine sand-
stone, and terminate with wave or asymmetrical ripple
forms (Fig. 12C). Wave ripple orientations displayed in
Figure 13 for the offshore units are predominantly from this
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Fig. 7 (a & b). Graphic log and interpretation of the section at Jersey Shore (3); see Fig. 5 caption for details.

facies. More rarely, the sandstones are deformed into ball-
and-pillow structures. The sandstone beds pinch and swell
or disappear laterally over distances of many metres. Fossils
include transported brachiopods, crinoid fragments, gas-
tropods, and traces of Cruziana and Skolithos ichnofacies.
This assemblage occurs in the lower portions of the sections
at Jersey Shore (3) (Fig. 7), Port Matilda (4) (Fig. 8), and
Horseshoe Curve (6) (Fig. 10).

These facies are interpreted as forming in a ridge-mar-
gin environment because of their stratigraphic position and
indications of lower flow strengths. They are similar to the
hummocky sequences reported by Dott and Bourgeois
(1982) and Duke (1985), and described by Craft and Bridge
(1987) for the type locality of the ‘‘Chemung Group’’
directly north of the study area. Thus, storm-driven geo-
strophic flows (Swift, 1985) or dilute, storm-induced, shelf
turbidity currents (Walker, 1985) and strong oscillatory
flows are hypothesized to have redistributed sand around
the ridges.

INTER-RIDGE SEAFLOOR

This environment is characterized by a dark grey to
olive grey non-fissile mud shale or greenish grey fissile silty
shale associated with rare, thin, very fine sandstone beds. It
contains a few slightly disarticulated brachiopods, no corals
or sponges, and is considered to be the deepest water
assemblage deposited farthest from ridges. It occurs in the
lower portions of the sections at Franklindale (1) (Fig. 5),
Port Matilda (4) (Fig. 8), and Entriken (6) (Fig. 9).

MubDDY SHOREFACE

Overlying the facies interpreted as ridge and ridge-
margin in origin, and below demonstrable tidal flat facies,
in most sections is from 30 to 100 m of interbedded grey, or
olive grey silty shales and thinly bedded fine grained silty
sandstones (Fig. 12D). The sandstones comprise less than
30% of the assemblage, commonly are bioturbated, wave-
rippled, and flaser or lenticular bedded, and preserve an
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Fig. 8 (a & b). Graphic log and interpretation of the section at Port Matilda (4); see Fig. 5 caption for details.

abundant brachiopod and bivalve fauna, most notably
Cyrtospirifer sp. and Grammysia. Thin coquinite beds
often contain fish plates and bones. The dominant ich-
nofacies is Cruziana although a Skolithos assemblage
increases in proportion towards the top. This environment
is present at all the sections except Horseshoe Curve (6); at
Tioga (Fig. 6) 20 m of shale, slightly siltier than the inter-
ridge lithology, is included within it.

The interpretation of this assemblage as a muddy
shoreface deposit rests primarily on its stratigraphic posi-
tion and a suggestion of an increase in vertical burrows. The
shoreface was muddy because the shelf ridges filtered out
the high energy waves that produced hummocky cross—
strata on their margins. In addition, as will be discussed
below, the estuaries seemed to have trapped sand, and what
sand did leak out moved offshore.

SANDY SHOREFACE

At Everett (7) (Fig. 11) and Horseshoe Curve (6) (Fig. 10)
the muddy shoreface is replaced by from 30 to 40 m of
greenish grey, moderately to strongly bioturbated,
quartzose, fine grained sandstones with subordinate inter—
beds of olive silt shales. The sandstones possess sharp and

planar bases and are either planar and thinly bedded or
trough cross-stratified (medium scale) where not destroyed
by burrowing, contain a sparse brachiopod fauna, and
often preserve asymmetrical ripples on their upper surfaces.
Most importantly, they contain numerous vertical burrows
of the Skolithos ichnofacies.

The interpretation of this assemblage as a sandy
shoreface is based on its stratigraphic position below mud-
cracked tidal flat deposits, the greater quartz content and
vertical burrows in the sandstones, and the indications of
unidirectional flows.

FORESHORE AND BEACH ENVIRONMENTS

No foreshore and beach deposits can be identified with
certainty in any of the sections, a conclusion also reached by
Walker (1971) and Walker and Harms (1975) in their study of
an older Catskill shoreline 100 km to the east. We attribute
this to a variety of causes working in combination. As
suggested above, although sand was available, it appears to
have been trapped in estuaries and shunted directly to the
shelf in riverine or tidal plumes. Secondly, the shoreline
wave climate may have been low because of the presence of
offshore ridges. Rine and Ginsburg (1985) documented a
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Fig. 9. Graphic log and interpretation of the section at Entriken (5); see Fig. 5 caption for details.

modern muddy shoreface in Suriname containing 5 m high
mud banks occupying the position of shoreface-connected
ridges on a sandy coast. Even in this sand deficient system,
sandy beaches are maintained by the intermediate to low
wave climate of the region, suggesting either the Catskill
wave climate or available sand at the shore must have been
even lower than the present Suriname shore. Without the
sand or energy to winnow muds, we may not be able to
identify facies from this environment even if they exist.
Thirdly, foreshore and beach facies could have been
removed by the lateral migration of backshore tidal chan-
nels during progradation or by ravinement during trans-
gression of the more energetic ridge environments. The
evidence for both processes is given below.

TipAL FLATS AND TRANSGRESSIVE SHOREFACE

At Jersey Shore (3) (Fig. 7), Entriken (6) (Fig. 9), and
Everett (7) (Fig. 11), deposits of the shoreface are overlain by
progradational sequences of transgressive shoreface sands

and tidal flat muds; these are the Irish Valley motifs of
Walker (1971) sensu stricto and the silty-muddy motifs of
Rahmanian (1979) (Fig. 12E). A complete sequence com-
prises in ascending order: a basal bioturbated quartzose
sandstone with an erosive base; a green fissile silty shale; a
green to reddish mudstone with subordinate thin cross—
laminated sandstone beds; red laminated siltstones; and red
massive mudstones. The basal sandstones often contain
marine fauna and traces of the sandy shoreface deposits.
The green to reddish mudstones contain Lingula and their
sandstones are often capped by asymmetrical small-scale
ripple forms. The red laminated siltstones and massive
mudstones contain mudcracks, root traces, and in strat-
igraphically higher units, calcareous concretions (caliche).

We agree with previous interpretations that these record
minor shore-normal fluctuations of the coastline, probably
caused by variations in the balance between subsidence and
sediment input. The increase in number from north to south
is attributed to an accumulation rate for the Upper Devo-
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nian in the southern sections nearly double that to the north
(Sevon, 1985, Fig. 1).

TipAL FLATS AND CHANNELS

At Franklindale (1) (Fig. 5), Tioga (2) (Fig. 6), Port
Matilda (4) (Fig. 8), and Horseshoe Curve (6) (Fig. 10),
shoreface deposits are unconformably overlain by fining
upwards sequences interpreted as the product of channels
migrating laterally through muddy tidal flats (Fig. 12F, G,
and H). A complete sequence contains from the base
upwards, pale olive or pink, large-scale trough or planar
cross-stratified fine to medium grained channel-filling
sandstones; inclined heterolithic strata of red very fine-
grained sandstone, silistone, and mudstone arranged in thin
interbeds with flaser or lenticular bedding and asymmetrical
ripples forms; and red laminated siltstones and mudstones
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with mudcracks and root traces. The channel sands often
contain a hash of brachiopod, bivalve, gastropod, and cri-
noid fragments and the heterolithic strata may contain Lin-
gula, whereas the upper units are devoid of body fossils.

The interpretation is based on comparison with tidal
flat sequences summarized by Weimer ef al. (1982). We
especially note the similarity of the inclined heterolithic
facies with those described by Smith (1985) from the estuary
mouths of modern tidally-influenced rivers, where alter—
nating sand and mud is deposited on point bars, probably in
response to temporary tidal storage of water.

ESTUARINE TIDAL SAND SHOALS

At Port Matilda (4) (Fig. 8), Entriken (5) (Fig. 9), and
Everett (7) (Fig. 11), buff white, medium to coarse grained
sandstone bodies up to 10 m thick in this interval are inter-
preted as estuarine tidal sand shoals. They consist of thick
sets of massive or large-scale trough and to a lesser extent,
planar cross-strata and solitary sets showing multi-direc-
tional and, at Entriken (5) opposing flow directions (Fig. 121
and J). The sets often are draped with shale and contain
fragments of marine body fossils and quartz pebbles along
bedding planes. Bases of the bodies are planar and can be
either erosional or gradational; tops are always gradational.
At Franklindale (1) (Fig. 5) and Jersey Shore (3) (Fig. 7),
sandstone-dominated heterolithic interbeds also have been
interpreted as estuarine in origin, possibly as shoal margins.

We interpret these as estuarine shoals and associated
deposits because of their gradational contacts with tidal flat
and channel deposits, their relatively lower density of bur-
rows possibly due to decreased salinities, and their multi-
directional large-scale bedforms, possibly due to amplified
tides. They are similar to estuarine deposits described by
Clifton (1982) from Willapa Bay, Washington, USA.

MEANDERING FLUVIAL ENVIRONMENTS

Overlying the above environments at all the sections,
but measured only at Franklindale, are environments of a
low gradient meandering fluvial system. For further
description see the references reviewed above.

DiscussioN

The facies and the interpretations presented above sug-
gest to us that the fluid and sediment dynamics of the
Catskill Sea in Pennsylvania during middle Frasnian time
were driven by a combination of wind and tidal forcing. A
field of sand ridges with associated inter-ridge environ-
ments was maintained offshore, possibly on the inner shelf,
by wind/wave-driven currents. How the sands came to be
concentrated offshore on a generally muddy coast is prob-
lematical, not only here but in other shelf sands, such as the
Tocito Sandstone Lentil of New Mexico (Tillman, 1985) and
the Woodbine-Eagle Ford sandstones of Texas (Phillips
and Swift, (1985). Transport of sands from the shoreface by
coastal downwelling during the storm events that produced
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the hummocky cross-strata does not seem reasonable along
a muddy coast. Because the overlying estuary deposits are
richer in sand than the shoreface deposits, we suggest a delta
or estuary plume model as presented by Patterson (1983) in
Phillips and Swift (1985). As reviewed above, a fluvial
depocenter existed in central Pennsylvania (Fig. 4) with
possibly a second to the northeast. A third was hypothesized
by Willard (1939) and Dennison and Dewitt (1972) to the
southwest at the Maryland state line, but it has not been
substantiated (Warne, 1986). We envision sediment-laden
flows discharging onto the shelf from these fluvial estuaries
during storms, when high river discharges, storm surges,
and tides were combined. Geostrophic flows then would
have transported the material alongshore.

We favor transport by geostrophic flows over tidal
flows only because the presence of hummocky cross-strata
suggests geostrophic flows should have existed. The pal-
eocurrent data (Fig. 12) are equivocal. Both geostrophic and
tidal flows could be expected to transport sand offshore as
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Fig. 12 A) Plane-bedded fine sandstones of a shelf sand ridge complex at Tioga (2) (20 m in Fig. 6); B) planar-bedded and large-scale planar cross—
bedded sandstones of a shelf sand ridge complex at Entriken (5) (75 m in Fig. 9a); C) hummocky sequences of a shelf ridge margin at Horseshoe
Curve (6) (25 m in Fig. 10); D) olive grey silty shales interpreted as a muddy shoreface deposit at Horseshoe Curve (6) (230 m in Fig. 7b); E) typical
Irish Valley motif of Walker (1971) and Rahmanian (1979) starting at the base with a transgressive sandstone and fining upwards into red tidal flat
mudstones (Entriken (5) at 140 m in Fig. 9a); F) tidal flat and channel sequences at Port Matilda (4) (480 m in Fig. 8b); G) tidal channel sandstone at
Tioga (178 m in Fig. 6); H) tidal channel inclined heterolithic strata at Tioga (2) (200 min Fig. 6); 1) large-scale trough cross—stratified sandstone body
interpreted as an estuarine tidal sand shoal at Port Matilda (475 m in Fig. 8b); J) solitary cross-strata set in a pebbly medium sandstone at Entriken
with ripple forms of opposing azimuth at its top. This is interpreted as an estuarine tidal sand shoal (245 m in Fig. 9b).
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well as alongshore to produce the observed sole mark ori-
entations. Large-scale cross-strata orientations in the sand
ridge complexes were difficult to measure in quasi-two-
dimensional outcrops and therefore are not presented in
Figure13. The only believable data are from Franklindale (1)
(Fig. 5), where sand waves migrated almost due northwest,
that is, offshore. Shale drapes at many sites suggest periods
of relaxation, but again, could support either type of flow.
More diagnostic tidal features such as bundles, were not
observed in these environments.

Regardless of the mechanism of forcing, it seems certain
(Fig. 13) that the net alongshore circulation was to the
southwest, corroborating Willard’s (1939) almost prescient
proposal for a clockwise circulation of waters in the epeiric
ocean of eastern North America. Residual tidal circulation
was calculated by Slingerland (1986) for various ocean tides
propagating into the Catskill Sea and various sea bathyme-
tries. Southerly drift along the Pennsylvania coast was pre-
dicted for selected cases (e.g., Fig. 3B of that paper), but no
conclusions should be drawn until a more accurate multi-
layer model including wind stresses is used.

Landward of the shelf ridges, along the shoreface and in
the estuaries, diurnal tides were the principal formative
process. This is evidenced by the extensive tidal flat facies
and estuarine shoals with multi-directional large-scale sand
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waves (Fig. 12). Some investigators (e.g., Walker, 1971;
Walker and Harms, 1975; Woodrow and Isley, 1983; Wood-
row, 1985) have minimized the effect of tides as a significant
process because of an absence of channels and winnowed
sand bodies, and because of a belief that epicontinental seas
would be friction—-dominated. As defended above, we inter-
pret many of the motifs in the Irish Valley Member of the
Catskill Formation as the result of lateral tidal channel
migration (for example, at Port Matilda (4)), rather than
shore-normal transgressive-regressive cycles. And, as
Thompson documented (Weimer et al., 1982), tidal flats at
the head of the Gulf of California, along a macro-tidal
coast, contain remarkably few channels, presumably
because sand is scarce. Finally, Slingerland (1986) solved the
equations describing tidal wave propagation in the Catskill
Sea to demonstrate that the oceanic tidal wave may be
amplified along the Catskill shoreline, depending upon the
width of the entrance from the open ocean, the mean thal-
weg water depth, and the width and concavity of the Cat-
skill margin.

The range of the tides at the shoreline is still difficult to
estimate. We believe, as Rahmanian (1979) did, that the
absence of deposits traditionally described as deltaic, such
as distributary mouth bars, levees, and so on, a fact first
noted by Walker (1971), is because the river mouths were
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Fig. 13. Paleocurrent data. Orientation roses of wave ripple crests are
translated east of the outcrop locations; roses of the cross—strata are
translated west. Orientation rose for sole marks is a composite from the
bases of hummocky beds at all the sections. Wave ripple crests are from
the tops of marine sandstone beds; large-scale cross-strata (both
trough and planar) are from transition sandstones (Irish Valley Member
and equivalents). See text for interpretation.

tide-dominated. The estuarine sand shoals, as for example
at Port Matilda, very near a depocentre, are the equivalents
of the river-mouth tidal ridges described by Meckel (1975) at
the mouth of the Colorado River, Gulf of California, or by
Coleman (1976) at the mouth of the Ord River, Australia. If
this is the case, then compared to present coasts (Hayes,
1975) the tidal range must have been at least high meso-
tidal, although this minimum magnitude depends to some
extent upon the wave climate and river discharge.

In summary, seven stratigraphic sections along 250 km
of the Catskill shoreline across Pennsylvania record the
westward migration of a mixed wind/wave and tidal coast
during Diaphanospora reticulata (middle Frasnian) time.
The coast was oriented roughly along a north by northeast
trend as indicated by the near synchronism of the sections
and the orientation of offshore wave ripples. It experienced
a combination of wind/wave-driven circulation offshore
and tidal circulation nearshore and inshore, as recorded in
vertical sequences of trough cross-bedded shelf sand ridges
with adjacent hummocky-stratified sandstones and associ-
ated marine shales and superjacent thick accumulations of
tidal flat and channel sequences.
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