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Chapter 9

OCCURRENCES, PROPERTIES, AND PREDICTIVE MODELS OF
LANDSLIDE-GENERATED WATER WAVES

RUDY L. SLINGERLAND and BARRY VOIGHT

ABSTRACT

Large water waves generated by landslides impacting with a body of water
are known from Disenchantment and Lituya Bays, Alaska; Vaiont reservoir,
Italy; Yanahuin Lake, Peru; Shimabara Bay, Japan; and many fiords in Nor-
way. The combined death toll from these events most likely exceeds 20,000
people. Such waves may be oscillatory, solitary, or bores and nonlinear
mathematical theories or linearizing assumptions are thus needed to describe
their wave amplitudes, celerities, and periods. In this paper the following
approaches are compared: (1) the Noda simulation of a vertically falling and
horizontally moving slide by linéarized impulsive wave theory and estima-
tion of nonlinear wave properties; (2) the Raney and Butler modification of
vertically averaged nonlinear wave equations written for two horizontal
dimensions to include three landslide forcing functions, solved numerically
over a grid for wave amplitude and celerity; (3) the empirical equations of
Kamphuis and Bowering, based on dimensional analysis and two-dimen-
sional experimental data; and (4) an empirical equation developed in this
report from three-dimensional experimental data, i.e., log(Mmax/d) =a + Db
log(KE), where a, b = coefficients, Nmax = predicted wave amplitude, d=
water depth, and KE = dimensionless slide kinetic energy. Beyond the slide
area changes in waveform depend upon energy losses, water depth and basin
geometry and include wave height decrease, refraction, diffraction, reflec-
tion, and shoaling. Three-dimensional mathematical and experimental mod-
els show wave height decrease to be a simple inverse function of distance if
the remaining waveform modifiers are not too severe. Only the Raney and
Butler model considers refraction and reflection. Run-up from waves break-
ing on a shore can be conservatively estimated by the Hall and Watts formula
and is a function of initial wave amplitude, water depth, and shore slope.
Predicted run-ups are higher than experimental run-ups from three-dimen-
sional models. The 1958 Lituya Bay and 1905 Disenchantment Bay, Alaska
events are examined in detail, and wave data are developed from field ob-
servations. These data and data based on a Waterways Experiment Station
model are compared to wave hindcasts based on various predictive approaches,
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which yield a large range of predicted wave heights. The most difficult prob-
lems are in matching the exact basin geometry and estimating slide dimen-
sions, time history, and mode of emplacement. Nevertheless, the hindcasts
show that the mathematical and experimental model approaches do provide
useful information upon which to base engineering decisions. In this regard
the empirical equation developed in this report is at least as satisfactory as
existing methods, and has the advantage of requiring less complicated input
data.

INTRODUCTION

Large water waves generated by landslides impacting with a body of water
are by now, well documented. The earliest important record of such events
in the Western Hemisphere occurred as a consequence of three separate
glacier falls from the west side of Disenchantment Bay in Alaska (Figs. 1 and
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Fig. 1. Dlsenchantment Bay and vicinity, Alaska (map by W.O. Field); Fallen Glacier is at
lower left, Station Reef at map center. Haenke Island is 3.5 km from the shoreline at the
foot of Fallen Glacier. For regional location see Fig. 29.
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2). In the second of these events in about 1850, waves reportedly killed
about one hundred Indians who at the time of the fall, were at a summer
seal camp a few kilometres south of Haenke Island (Fig. 1); apparently there
was but one survivor (Tarr, 1909, p. 68). A similar event occurred in 1905,
although not necessarily involving the same glacier (Fig. 2); fortunately the
Indians had left the bay before the glacier fell, “for it is hardly conceivable
that their canoes could have lived in the floating ice during the passage of
such waves as this glacier avalanche generated ...” (Tarr, 1909, p. 68; cf.
Tarr and Martin, 1914, pp. 166—167).

Probably the most well-studied event in the Western Hemisphere has been
the 1958 landslide and resulting waves in Lituya Bay, Alaska. Two of three
fishing boats in the bay were sunk and two persons were killed by a 30 m
high water wave traveling seaward at about 150—200 km/hr. The shore suf-
fered extensive destruction (see e.g., Figs. 31—34).

Fig. 2. West side of Disenchantment Bay, Alaska. Fallen Glacier (arrow) as photographed
in August 1959 from Station Reef (see Fig. 1 for location; photo M-59-P191, courtesy
W.O. Field, The American Geographical Society). Large snow accumulations were visible
after the glacier slide by 1909 (Tarr and Martin, 1914, p. 167). In 1946 the path of the
slide was still visible and the glacier was reforming. By 1959 rocks beneath the glacier still
showed where the slide had occurred, although alder thickets were taking hold. The gla-
cier tongue was better formed than in 1946.
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Results elsewhere have been even more catastrophic in terms of lives lost.
In the 1963 Vaiont reservoir disaster in northern Italy, over 2000 people
were drowned by a flood wave which, 1 km downstream from the slide, mea-
sured more than 60 m high (Miiller, 1964). In Japan, over 15,000 deaths
resulted from the 1792 Shimabara Bay catastrophe (Ogawa, 1924, pp. 219—
224). In Norway, several hundred fatalities occurred in a series of rockslide-
generated wave events dating to, at least, 1731 (Jgrstad, 1968; Chapter 3,
this volume) and in Peru, several hundred miners drowned in the lakeside
1971 Chungar disaster as described in Chapter 7, this volume. It is thus
clearly desirable to predict the occurrences and properties of these abnormal
waves. Our purpose here is to summarize the available theoretical and experi-
mental knowledge on landslides and their resulting water waves. Attention is
given to important variables, and various predictive models are compared
with each other and with results from a Waterways Experiment Station hy-
draulic model. Finally, some better-known field cases are explored and their
wave hindcasts discussed.

GENERAL WAVE DESCRIPTION
Observations of water waves generated by both prototype and model land-
slides fall into three classes of gravity wave types: oscillatory waves, solitary

waves, and bores (Fig. 3). Oscillatory waves are periodic in the direction of
travel and have nearly closed elliptical water particle orbitals. Water particles
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Fig. 3. Water surface profiles of three gravity wave types produced by landslides. Oscilla-
tory waves have closed water particle orbitals whereas solitary waves and bores have a
forward translation of mass. Solitary waves travel wholly above the mean water level
(MWL).
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Fig. 4. Sketch defining variables important for two-dimensional waveforms (modified
from Ippen, 1966). L = wavelength, = wave amplitude, H = wave height, and d = water
depth; x is the horizontal axis, positive in the direction of travel and z is the vertical axis,
positive upwards.

travel both with and against the direction of wave motion, and mass trans-
port is of lesser importance than in other types of waves. A solitary wave
consists of a single waveform which travels with constant velocity wholly
above mean water level (MWL). Solitary waves are waves of translation,
where water particles move only in the direction of advance; they generally
are not of pure form, but have tails of smaller dispersive waves. Bores are
steep and turbulent progressing wave fronts where the water everywhere
behind the wave is approximately level and of greater elevation than the
water surface in front of the wave. Although bores may be quite high ini-
tially, energy losses due to turbulence cause them to dissipate with distance
of travel. Solitary waves, in contrast, have very low dispersion rates. Typical
surface forms of all three wave types are given in Fig. 3; the usual parameters
of measurement are illustrated in Fig. 4.

The difference between wave height H and amplitude n (Fig. 4), is an im-
portant distinction since in irregular waves H will not necessarily be twice 1.
Tracings shown in Fig. 5, of typical landslide-generated water waves for a
three-dimensional model, demonstrate that no constant relationship exists
between H and 7. This distinction must be kept in mind in later comparisons
of waveform predictions.

No adequate mathematical theory of wave behavior covers all these wave-
forms. For oscillatory waves where H/d and H/L (see Fig. 4 and Table I for
definition of variables) are much smaller than unity, small-amplitude wave
theory may be applied. It is assumed that u? and w?, the squares of the x
and z fluid velocity components, can be dropped in the integrated equation
of motion: 4

(s

p
00+ 12+ w2)+—+g2=0 1
ot 3 (4 ) p »ffz [1]

where ¢ is the velocity potential, P is fluid pressure and p is fluid density.
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Fig. 5. Tracings of water surface elevation through time for various probes in the Water-
ways Experiment Station (WES) Lake Koocanusa study (modified from Davidson and
Whalin, 1974). Note that H is not necessarily twice 77, and the first wave to arrive at a
probe is not always the highest.

This linearizes the partial differential equation. With the assumption of con-
stant fluid density and irrotational flow, the linearized integrated equation
of motion, the Laplace equation, and the appropriate boundary conditions
can be solved for the water surface configuration, wave celerity (velocity),
and wave energies, for all depths of water up to the breaking point of the
wave. This is also often called linear wave theory. If wave amplitudes are
relatively “large”, small-amplitude or linear wave theory is no longer valid
and finite-amplitude theory must be applied. Higher-order terms must be
retained and nonlinear boundary conditions imposed. Solitary wave theory
is of the finite-amplitude type where d/L < 1/50; solutions give surface con-
figuration through time, wave celerity, and wave energy. Bores may be
considered hydraulic jumps which travel with a celerity C. Both bore veloc-
ity and height are proportional to the water depths and velocities in front of
and behind the bore (Dronkers, 1964, p. 365).

Of particular importance for our purposes are the theories for impulsively
generated waves, where an initial impulse acts on the water surface over a
finite distance of unit width. The classic solution to waves of this type is due
to Cauchy and Poisson (Lamb, 1945, p. 387); later solutions, both two and
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TABLE I

Definition of symbols

a acceleration of landslide

a, b coefficients for equation [10]

A surface area of slide

a(S) a function of slope in Hall and Watts study

C wave celerity, i.e., velocity of wave propagation, L/T

Cp coefficient of drag of landslide in Raney and Butler study

Cp coefficient of pressure drag of landslide in Raney and Butler study

Cr Chezy C

d mean water depth

F Froude number, equal to V/</gd

Fp drag force of landslide in Raney and Butler study

F, force per unit mass of water exerted by landslide in Raney and Butler study

g gravitational acceleration '

H height of water wave from trough to crest

H maximum crest to trough distance in a train of waves in the Law and Brebner
study

Hg stable wave height, defined as that height after which the rate of wave height
decrease with distance is small

h thickness of slide

hy thickness of slide in Kamphuis and Bowering study

hy height of initial surface disturbance above base of reservoir in Wiegel et al. study

i, J slope angles in degrees P

K; slide energy parameter as defined by Law and Brebner

Ky dimensionless kinetic energy parameter as defined by Kamphuis and Bowering

Rk, kq, Ry constants

k(S) a slope function in Hall and Watts study

KE dimensionless kinetic energy of slide as defined in this report, equal to:

16 612

L wavelength of water wave from trough to crest

1 slide length

n integer

p fluid pressure

p porosity of slide

q two-dimensional slide volume per unit width

R vertical height of run-up above mean water level

r radial distance away from disturbing source

o Pearson Product Moment correlation coefficient
slope; vertical rise/horizontal run (dimensionless)

s distance of travel parallel to slide plane of landslide

s(t) distance of travel of slide in Noda study

T wave period

t elapsed time

u x-direction velocity component

v y-direction velocity component

Vv velocity of slide, box or wall

V.

av average velocity of slide through water
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TABLE I (continued)

Vo, Ve velocity of impact of slide front with bay bottom assuming no velocity decrease
due to water (V},); of centroid with mean water level (V)

Vim velocity of slide, box, or wall upon impact with water surface

V. (t) velocity of falling box in the nth time step in Noda study

Vi relative velocity between slide and water in Raney and Butler study

w z-direction velocity component

wi slide width in Kamphuis and Bowering study

x horizontal direction component

y horizontal direction component

z vertical direction component

B angle between front of slide and horizontal

¥ specific weight of water

v slide volume per unit width in Law and Brebner study

Vw volume of water acted on by slide in Raney and Butler study

Th wave amplitude above mean water level prior to run-up in Hall and Watts study

n wave amplitude measured from mean water level

n(x, t) instantaneous water surface elevation measured from mean water level

Nmax water surface elevation from mean water level for highest wave in train
inclination of slide surface

N length of initial surface disturbance in impulsive theory

Am basal dimension of box in Noda and Wiegel, approximately equivalent to thick-
ness of slide mass

M viscosity of water

Ta dimensionless form of dependent variable A

o density of water

Ps density of slide

T fluid shear stresses in Navier—Stokes equation

) velocity potential

ba function

O angle of dynamic sliding friction, includes pore pressure, roughness effects

water depth in slide area of Raney and Butler study

three dimensional, are by Kranzer and Keller (1959), Unoki and Nakano
(1953), and Noda (1970). All are based on linear wave theory.

THEORETICAL AND EMPIRICAL APPROACHES

Attempts at predicting landslide-generated waveforms have proceeded
along two lines: deducing a mathematical model from the physical laws of
fluid dynamics under simplifying assumptions, or inductively determining
the appropriate variable relationships through dimensional analysis and
empirical definition of constants and functions.

Deductive approach

As one example of the first method we consider the analysis of Noda
(1969, 1970; this also summarizes Wiegel et al., 1970, who used the solu-
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Fig. 6. Sketch defining Noda’s vertical drop model (from Noda, 1970). A two-dimen-
sional box of width A, falls through a body of water of depth d at a velocity, V},(¢), gen-
erating waves of amplitude n(x, t).

tions of Kranzer and Keller, 1959). Using impulsive wave theory, Noda
simulated a landslide by assuming:

(1) a vertically falling two-dinfensional box of basal dimension A, , and
height greater than still water depth d (Fig. 6);

(2) slide volume small compared to water body volume;

(3) known velocity-time history of the box;

(4) incompressible fluid, its motion irrotational, and the linearized equa-
tions of surface gravity waves applicable;

(5) the horizontal fluid velocity under the box, at x = 0, not a function of
z;

(6) impact phenomena could be ignored;

(7) the displacement-time history of the box in the water, s(t), suitably
approximated by n straight lines: s(t) = V,t + k,, where n = integer (0, 1, 2,
3, ..., N) denoting different additional velocity approximations. If n =1 and
k = 0, the box falls through the water with constant velocity.

Assumptions (1) to (3) define the type of landslides for which the solu-
tions can be expected to apply. Assumption (4) imposes the restriction of
linearity on the system and will be discussed later.

Concerning assumption (5), Noda (1970) concluded that if x/d is greater
than 20, very different velocity profile distributions change the results less
than 1% from those with a uniform velocity distribution. This implies that
at large x, surface waveforms are independent of the horizontal fluid veloc-
ity—depth distribution; therefore this assumption will presumably not ser-
iously affect the conclusions.

Assumption (6) might also not be too limiting since Wiegel et al. (1970)
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showed that the water surface profile at large x was independent of the
splash. Noda tested assumption (7) with two different straight line approxi-
mations to the displacement-time history of the slide and found a differ-
ence of wave amplitudes in comparison to the best estimate of the experi-
mental data to be less than 2%, if the most commonly occurring velocity is
used. This suggests that exact knowledge of displacement-time histories of
landslides may perhaps not be necessary for reasonable waveform pre-
dictions (Noda, 1970, p. 844).
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Fig. 7. Solutions of Noda vertical drop model (from Noda, 1970). Dimensionless maxi-
mum wave amplitude is plotted as a function of box Froude number for various distances
from the disturbance. Types of solutions (asymptotic versus numerical) refer to Noda’s
original paper and are not relevant to this discussion. Note that constant fall velocity is
assumed (n =1,k =0).
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Fig. 8. Solutions of Noda vertical drop model at x/d = 0 (from Noda, 1970). See Fig. 7
for details.

With these assumptions, Noda obtained the theoretical solution:
n(x, £)/Am = f(V/\/gd, x[d) [2]

where n(x, t)/\, is the dimensionless wave amplitude, V/v/gd is the box
Froude number and x/d is the dimensionless horizontal distance from the
box. Figs. 7 and 8 give some theoretical solutions at different x/d distances
from the slide for the case of n = 1 and k = 0 (constant box velocity), and
Fig. 9 compares these solutions with experimental data. The fit is discussed
later.

Returning to assumption (4), what restrictions are imposed by linear wave
theory? Solutions might not be expected to hold near the source, since wave-
forms are complicated and unstable there. However, Wiegel et al. (1970)
showed that for a vertically dropped box, Kranzer-Keller theory accurately
predicted the height of the envelope maximum of the first group of waves
down to x/d ~ 2 (fig. 5 of Wiegel et al., 1970).

Fig. 10 shows that h, /d, where h,, is distance of fall of box, also controls
the linearity of the waveforms. Here, 1y, /d is plotted against h,, with con-
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Fig. 9. Theoretical (lines) and experimental (circles) values of wave amplitude through
time for three different dimensionless box widths (Ay, /d) (from Noda, 1970). Top line:
Am/d = 1/3, center: A\, /d = 1/4, bottom: Ay, /d = 1/8. As Ay, /d increases, the theoretical
solutions increasingly depart from the experimental data, implying that the waveforms
are becoming increasingly nonlinear.

stant d, A\, /d = 2 and x/d small, a case most likely to be nonlinear (Wiegel
et al., 1970, p. 330). The data are linear up to h, = d, after which bores
form. Many landslides will have h,, greater than d and we may conclude that
their resulting waves should be strongly nonlinear.

Typical examples of theoretical versus experimental wave amplitudes for
various values of A\, /d are given in Fig. 9. As A, /d increases the theoretical
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Fig. 10. Plot of dimensionless maximum water surface elevation (Tiymax ) versus distance
above reservoir bottom of falling box (hy, ) (from Wiegel et al., 1970). When hy, > d, the
resulting waveforms are bores and are therefore mathematically nonlinear.

solutions increasingly depart from the experimental data, demonstrating the
inapplicability of linearized equations at these higher A, /d values (Noda,
1970, p. 844).

To overcome this problem of nonlinearity Noda provided a means of esti-
mating the largest wave height in the nonlinear region for vertical fall mod-
els. From examination of experimental data, Noda prepared Fig. 11 to give
the fields of waveforms as functions of \,,/d and model slide (box) Froude
number. Examination of waves in the nonlinear region indicates that profiles
propagate without dispersing; since linear solutions include dispersion,
linear solutions would predict too low wave heights for large x. Therefore for
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) , T T TABLE II
L _ Means of estimating largest wave in nonlinear region for box-drop problem (Noda, 1970,
g table 2, p. 846).
g NONLINEAR BORE REGION | Region Means of estimating largest wave
£ 10 — STION REG (When bore first forms)
; 08 ] Oscillatory linearized theory solution
u °° ® ) . iy . : .
2 ] Nonlinear transition A use a linear interpolation for V = constant between oscil-
| & 04— latory and solitary region
ﬁ; § Nonlinear transition B use linear solution for x/d = 5.0 regardless of actual x/d x
i 0.2} .
| 032:;:::“‘ Solitary wave C use linear solution for x/d = 5.0 regardless of actual x/d
o'lo.u olAz 04 06 08 10 2 alt 6 Solitary wave D use linear solution for x/d = 0 regardless of actual x/d
BOX WOTH %m(dmmbm“) Bore use linear solution for x/d = 0 regardless of actual x/d
N rome REGON nonl'}near phenomena.” Thus the pursuit of a linear theqry seems wprthwhile
despite the fact that the actual phenomena involve nonlinear behavior.
Theoretical solutions have also been obtained for the case of a wall mov-
; ’J\/VVVW‘W ing horizontally into a body of water. Noda (1970), using a linearizing
| reson ® assumption that wall displacement was much less than water depth, showed
| that for displacement at constant horizontal velocity V, maximum water sur-
~EGION face elevation occurred at x/d ~ 2 (not at x = 0), and was predicted by:
oA~ Nmax/d = 1.32VIV&d [3]
resons (©) a0 (D) )
Fig. 12 shows this equation gives conservative estimates compared to non-
_/\/\\/W _ : linear experimental data of Miller and White (1966).
A second deductive approach is due to Raney and Butler (1975). They
BORE. REGION started from the equation of continuity and Navier-Stokes equations for
Fig. 11. Regions of wave types as defined by Noda model (from Noda, 1970). If box three-dimensional incompressible fluid flow and derived the vertically aver-
Froude number and dimensionless width placg a value in regions B .to D, or in' the bore aged n onlinear long-wave e quations in two horizontal dimensions. Vertieal
region, waves are nonlinear as bottom sketeh ‘“I;‘.Strages’ a;?g as&)ro’;“?f:: :f g’:t(t’gfnfzzr; averaging eliminates the vertical velocity component, w, but still makes solu-
;I;ZIZ:t ga'iuf,tf t::a::: ?e\::f?ta: ;?cfi:t“fhc:otsgi (t)ifmel.g s 7 and 8. Tl tions dependent upon water depth and bottom roughness; the solutions are
thus pseudo-three dimensional. The long-wave equations were then modified
to include three landslide forcing functions: a force per unit mass of water in
wave height estimation in each nonlinear region of Fig. 11, Noda has pro- slide contact due to displacement of the water by the slide mass, a force per
posed the approximate solution in Table II with the following commentary unit water mass due to viscous drag of the water by the slide surface area,
(1970, p. 847): “This is not to infer that the predicted waves will be identi- and a pressure or “form drag’ force per unit water mass exerted by the front
cal with the nonlinear waves. Instead, the assumption is that the amplitude of the slide. Appendix 1 gives the derivation of the three governing equa-
of the leading and usually largest wave obtained by use of linear theory solu- tions. Besides the boundary conditions discussed in Appendix 1 for the land-
tions through Table II may give a reasonable indication of the height of these slide, solid boundaries at shorelines and open boundaries to limit the area of
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Fig. 12. Plot of theoretical and experimental relationships for a wall moving horizontally
into a reservoir at constant velocity, V (from Noda, 1970). Experimental data are from
Miller and White (1966); theoretical solutions are from Noda (1970). Center line is irrele-
vant to this discussion.

investigation were needed. The first was modelled by defining the velocity
normal to a shore boundary as zero. This implies no wave energy is dissi-
pated along shores, an assumption certainly not fulfilled, but according to
Raney and Butler, not too damaging to solutions for the first wave. For open
boundaries, the wave must be transmitted in total. As an approximation
Raney and Butler allowed the wave profile to travel across the boundary
unchanged. '

Solutions are by the finite difference method for n, water surface ampli-
tude and u and v, water velocities in the x and y directions, respectively.
These are functions of basin shape and bathymetry, bottom roughness, vis-
cous drag and pressure coefficients of the slide, the volume, path and average
speed of the slide, an average shape of the slide as it travels through the
water, and the slide’s final configuration. Solutions are only presumed good
for the first wave since run-up and wave reflection are not considered.

Inductive approach

In the second method for determining relationships between impulsively
generated water waves and landslides starting above the water surface, it is
not necessary to make the simplifying assumptions required for closed-form
mathematical models. All variables thought to be important in controlling
waveform are compiled, and restrictions such as linear range limits are
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relaxed. The variables are first organized by Buckingham’s Pi Theorem into
the smallest number of dimensionally homogeneous groups; then the func-
tional relationships between a dimensionless waveform parameter and the
independent parameters are determined experimentally.

Kamphuis and Bowering (1972) conducted an experimental study in
which a weighted tray was emplaced by a roller ramp (essentially frictionless
sliding) into a flume 45 m long, 1 m wide, and of variable depth. They
selected parameters such that dimensional analysis gave:

(l wk hk ‘/lm B ps pd\/ d x Vg)
d d d ‘J—’ ? , 9 ’ #

(see Table I for definition of symbols).

Since this problem may be considered two dimensional, the dimensionless
width of the slide, wy/d, is irrelevant, and the equivalent two-dimensional
slide volume per unit width can be defined as g = (I/d) - (hy/d). The dimen-
sionless slide kinetic energy upon impact is K = (1) - q * (ps/p) * (V3. /gd).
They also assumed that shear was negligible, so the Reynolds number could
be eliminated and since for the tests the porosity, p, of the slide was zero
and ps/p was constant, both could be ignored. The effects of these param-
eters can be seen in later work by Davidson and Whalen (1974). The experi-
mental results of Kamphuis and Bowering were as follows:

(1) For the so-called ‘“‘stable wave height’’! at x/d ~ 37 from the slide
impact point:

H

d“ =F*7(0.31 + 0.2 log q) (5]

Ta =

[4]

within the range, 0.05 < ¢ < 1.0, hy/d > 1, 6 > 30°, and = 90°. For these
less important variables, as h,/d increased, H;; increased (all other variables
held constant), up to hy/d ~ } after which H,, remained constant (Fig. 13).
As 0 increased, H,; decreased and as § increased, H,, increased for large
slides, but decreased for small slides. For 6 > 30°, equation [5] overesti-
mates the stable wave height, while for 8 < 30°, wave height is underesti-
mated.

(2) Wave height decreased exponentially with distance from the source
(Fig. 14). The relationship is:

H Hg
d
for 0.1< ¢ <1.0,10< x/d < 48.

+0.35 e-—0.0S(x/d) [6]

! Stable wave height was defined by Kamphuis and Bowering as that height after which
the rate of wave height decrease with distance is small. This is a somewhat artificial
definition as will be seen in a later section.
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Fig. 13. Empirical data showing the influence of dimensionless slide thickness (hk/d )on
dimensionless stable wave height (Hg;/d) (from Kamphuis and Bowering, 1972). As hy/d
increases, Hgi/d increases, all other variables held constant, up to hy/d ~ 0.6 after which
slide thickness has a negligible effect.

(3) For wave celerities, the highest waves in a train followed the relation-
ship:
c 4 Mmax (7]

—=1
Ved 2d

which is the theoretical wave velocity of a solitary wave.

(4) Wave period increased linearly with x/d, and was independent of other
variables. Although wave height and velocity appeared to reach a stable value,
period and wavelength did not. The first wave continued to stretch out to
approximate a true solitary wave of infinitely long period with little decrease
in wave height.

Law and Brebner (1968) previously undertook a similar experimental
study involving a roller-bearing mounted tray which ran down a slope of 18—
25° into a flume 0.7 m wide and 9 m long. The dimensionless parameters
they formed were: H,/d, a wave height parameter, C//g(d + n), a wave
celerity parameter, H,/L, a wavelength parameter, and K, a slide energy
parameter defined as:

) (53
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Fig. 14, Empirical data showing wave height decrease with distance from a slide in a two-
dimensional model (from Kamphuis and Bowering, 1972).

This slide energy parameter is not a dimensionless kinetic energy param-
eter however, since V/d?, slide volume per unit width per (depth) 3, gives
dimensions of 1/length. Thus K, really equals two times the dimensionless
slide kinetic energy divided by depth, or: K, = 2 K, /d.

This means that K, calculated in units different from those used in their
wave height plots (ft) would give different wave height estimates. Because
of these considerations, and at the suggestion of A. Brebner (personal com-
munication, 1976) that the Kamphuis and Bowering study produced better
and more useful correlations, only their wavelength—wave height, wave
celerity and wave attenuation relationships will be considered here.

Their results showed:

(1) With a known depth and wave height at large x/d, the wavelength of
oscillatory waves can be determined from Fig. 15. Roughly, for 6 = 18—25°
as Hg; increases an order of magnitude, L increases slightly.

(2) The geometrical factors of the slide front are insignificant in compari-
son to other parameters.

(3) Wave celerity follows C =+/g(d + H), an approximation to the velocity
of a solitary wave.
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Fig. 15. Empirical data showing increase of wavelength with increasing wave height

(modified from Law and Brebner, 1968). Key to symbols: dimensionless slide thickness
- forV=0.35,24=04,0=045,0=0.5,8=0.6,°=0.85,9=0.9.

(4) Wave attenuation with distance follows the relationship:
Hy = 1/\/x
Comparison of functional relationships

Both Noda and Kamphuis and Bowering found wave height to be a func-

tion of the slide Froude number, distance from the slide, slide volume per.

unit width, and water depth. The types of functions are difficult to compare
because of their method of presentation, but both appear to be complex log-
arithmic or exponential relationships. The two experimental studies both
concluded that slide front geometry was less significant than the indepen-
dent variables in equations [5] to [8], and Noda concluded that irregulari-
ties due to impact phenomena (splash) were not important at large x/d.

PREDICTIVE MODELS OF LANDSLIDE-GENERATED WATER WAVES 337

Because of its nature the numerical model is not discussed here. In a sub-
sequent section some case history data are used to compare its predictions
with others.

Slide thickness was an important parameter. Fig. 13, from Kamphuis and
Bowering, shows that wave heights increased with increasing thickness if
h,/d < 0.6, but were relatively constant for h,/d > 0.6. The theoretical
solutions of Noda agreed, showing that increasing slide thickness yielded
increasingly larger wave heights up to the point of bore formation.

All three studies documented that wave height decreases either expo-
nentially or geometrically with increasing distance from a slide until a
stable wave height is reached at large x. Plotting Nmax/\, versus x at con-
stant slide Froude number from Fig. 7 gives an exponential decrease of wave
height which compares with an e **/¢ relationship of Kampuis and Bower-
ing and a 1/o/x geometrical relationship of Law and Brebner. Noda, how-
ever, showed that in the nonlinear transition region of Fig. 11, wave ampli-
tude of minor waves could increase with x for a distance because of rein-
forcement of different wavelength waves (note case B at bottom).

No data on wave velocity are available from Noda, but the two empirical
studies showed that leading waves travel with the wave velocity of a solitary
wave.

In the Kamphuis and Bowering study, wave period increased solely as a
function of distance from source. Thus the waves were stretching out, becom-
ing more nearly true solitary waves of infinitely long period. In the Law and
Brebner study, wavelength increased with increasing Hy; ; therefore assuming
linear theory, the period would increase with increasing Hg, also, a conclu-
sion contrary to Kamphuis and Bowering.

All studies concluded that the leading wave was always the highest. Wave
energy constituted from 25 to 50% of the total kinetic energy of the slide
at impact for an inclined slide and from 10 to 20% for a vertical drop in the
Kamphuis and Bowering study.

Kamphuis and Bowering obtained wave types of pure oscillatory form,
and solitary waves with trailing dispersive waves, but never obtained bores.
In a series of similar experiments, but where a box was allowed to fall ver-
tically into a flume, Wiegel et al. (1970) generated a whole range of wave-
forms from oscillatory waves where the box Froude number (V/A/gd) was
low, to bores at higher Froude numbers.

Some limitations of two-dimensional models

The relationships discussed thus far have been obtained under two-dimen-
sional conditions. What would be the difference in waveform if waves were
allowed to propagate in plan view through 180° or 360°? The matter has not
been thoroughly investigated by inductive approaches, but some aspects of
the problem have been tested theoretically.
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Kranzer and Keller (1959) derived equations for the height of the water
surface following an initial impulsive force applied over a finite area, for
both an ‘“‘axially-symmetric two-dimensional case’” and a “one-dimensional’’
case. The one-dimensional case in Kranzer-Keller terminology is equivalent
to the two-dimensional experimental studies as discussed here. ‘

No theoretical difference in period and wavelength relationship was found
between the Kranzer and Keller two- and one-dimensional models. How-
ever, in the two-dimensional (axial-symmetric) case wave amplitudes fell off
as the inverse of r, the radial distance from the source, whereas in their one-
dimensional case wave amplitude decreased as 1//x (exactly what Law and
Brebner found in their flume study). Experimental data from two runs in an
axially symmetric study by Johnson and Bermel (1949) are plotted in Fig.
16. Also plotted are the relationships of n/d to d/r where the constants were
arbitrarily determined by making the function equal to a data point near the

middle of the range of values. It appears that wave height is indeed inversely

04

n/d = 25(d/r)

— A

7/d = 363(d/r)

/

02—

7/d (dimensionless)

L | | | J
0 50 100

r/d (dimensionless)

Fig. 16. Dimensionless wave amplitude versus dimensionless distance from impulsive
source. Data are from an axially symmetric study by Johnson and Bermel (1949) in
which metal discs were allowed to fall into a reservoir of mean water level = 24 cm. Sym-
bol key: ¢ = function approximating ® data; ® = function approximating A data. These
relationships appear to be simple inverse proportions.
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proportional to distance from the disturbance for axially symmetric cases;
predictions from the two-dimensional theoretical and experimental studies
should therefore be conservative.

CHANGES IN WAVEFORM

The preceding studies have shown that as waves leave the slide area they
decrease in wave height and velocity and increase continuously in period.
Depending upon water body geometry and depth, the waves may also un-
dergo refraction, diffraction, reflection, and ultimately break on a shore.

Wave refraction occurs as a result of changes in bathymetry along the
wave crest. In relatively shallow water (d/L < 1/20), wave celerity is pro-
portional to water depth. Changes in the speed at which different segments
of the crest move due to water depth differences tend to align the crests
toward parallelism with bathymetric contours. Wave heights are increased by
superposition of convergent waves. If wave heights, wavelengths and basin
bathymetry are known, wave refraction diagrams can be drawn, showing
areas of increased wave height (see, e.g., Goldsmith et al., 1974).

Waves may also be diffracted or bent around impervious structures such as
promontories or breakwaters. .Wiegel (1964) presents a useful summary
of diffraction models around various shore geometries.

Reflection of waves is controlled primarily by the slope and permeability
of the reflecting body. For solitary waves Caldwell (1949, in Wiegel, 1964)
showed in experimental studies that for an impermeable slope of 30°, 40%
of the incident wave energy was reflected. More permeable slopes are less
efficient reflectors. ' :

That refraction, diffraction, and reflection of landslide-generated waves
are important is documented by Wiegel (in Miller, 1960, p. 65) who mod-
elled the 1959 Lituya Bay, Alaska wave: ‘““This . .. wave swung around into
the main portion of Lituya Bay, due to refraction and diffraction. The move-
ments of the main wave and the tail were complicated within the bay due to
reflections . . .” Although all three mechanisms are describable by theory to
some extent, no model is known in which all have been theoretically cal-
culated to predict specific wave characteristics from a landslide.

The ultimate change in waveform occurs when a wave breaks and runs up
the beach due to a forward translation of momentum. This run-up, defined
as the maximum vertical height above still water reached by the wave, can be
great for landslide-generated waves and its prediction is of practical impor-
tance. As before, no theory or empirical formulae are entirely adequate
although all generally agree that the relevant independent variables are slope
S, water depth at the foot of the slope d, wave height H, and, for periodic
waves, period T (see LeMehaute et al., 1968, for a synthesis of the problem).

The empirical results of Hall and Watts (1953) provide a usable relation-
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ship. They generated solitary waves in a flume 14 m long, 1.2 m wide and of
water depth, d, and measured the resulting run-up on a uniform slope, as
a function of wave height above still water level 7, , water depth d, and slope
S. Their results showed that 2:

R/ny = k(S) (nu/d)e® 1] [9]
where

k(S) S a(S)

11 S°-67 0.09< S< 0.20 1.90 S°-35

3.05 §013 0.20< S < 1.00 1.15 S°-02

But it has also been shown (Grantham, 1953) that increased roughness also
decreases R/ny,, so before application to a large-scale field case estimates
of roughness due to, say, forests must be obtained.

COMPARISON OF EMPIRICAL AND THEORETICAL RELATIONSHIPS WITH WA-
TERWAYS EXPERIMENT STATION MODEL STUDIES

To further examine the preceding relationships and to demonstrate their
applications, we compare predicted values to experimental values from a
U.S. Army Engineer Waterways Experiment Station (WES) model study of
potential landslide-generated waves in Lake Koocanusa, Montana. The reser-
voir was reproduced for about 1.5 km upstream of Libby Dam by a hydrau-
lic model of geometric scale factor 1 : 120 and velocity and time scale fac-
tor 1 : 10.95 (Figs. 17 and 18; cf. Chapter 8, this volume). Model slide ma-
terials of 0.002 m3 bags of iron and lead were allowed to slide down an
inclined plane into the model reservoir producing water waves which were
recorded at sixteen sites. Fig. 19 shows examples of the final position of
landslide material after a run and Figs. 20 and 21 show plots of wave am-
plitudes versus rib 909 and 927 landslide velocities for various probes located
in Fig. 17. Additional information and complete wave data are contained in
Davidson and Whalen (1974).

First, we compare the predicted wave height from Kamphuis and Bower-
ing to those observed from the model for rib 909, a slide close to the dam
(see Fig. 17) 3. The Kamphuis and Bowering relationship of stable wave

2 LeMehaute et al. (1968) incorrectly cite this equation due to Hall and Watts (1953)
such that the exponent is given as a(S) instead of a(S) — 1.

3 The wedge intersections of the Koocanusa rib slides plunge toward the reservoir at
angles of 28—34°; sliding of these rock wedges is equivalent to sliding over planar surfaces
inclined at about 20°, because of ‘‘geometric sliding factors” (cf. Hoek and Bray, 1974,
pp. 185—187; Banks and Strohm, 1974, p. 844). This angle is well suited to the experi-
mental conditions.
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Fig. 17. Plan view of Libby Dam and Lake Koocanusa WES model (from Davidson and
Whalin, 1974). Wave height probes are numbered 1—16 (note legend in figure); potential
slide locations (ribs) are shown on east bank.

height to slide Froude number and geometry is given by equation [5]. The
dimensionless slide volume per unit width, g, for slide 909 of the WES study
is?t:

q = slide volume/wd? = 1.147 X 10¢/100 - 942 =1.3

4 Slide width at rib 909 has been taken as 100 m, the maximum width at the surface.
Although the slide material during sliding probably spreads out before entering the
reservoir, this provides a conservative estimate of wave heights.
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Fig. 18. WES Libby Dam and Lake Koocanusa model showing roller mechanism for intro-
ducing model landslides (from Davidson and Whalin, 1974).

and maximum and minimum slide Froude numbers are 0.89 and 0.36, if
maximum and minimum slide velocities are 27 and 11 m/s, respectively,
and water depth at the slide site is estimated as 94 m. ‘“‘Stable wave heights”
are calculated from equation [5] as 29 and 15 m, respectively °. The wave
amplitudes as measured in the WES study at probe 14 (Fig. 17) are n14(max)
= 2.7 and N14min) = 0.9 m. The crest to trough distances corresponding to
these amplitudes are the same, Hygmax) = 2.7 and H14(m1n) 0.9 m,i.e., the
waves produced were solitary waves traveling wholly above the stlll water
level. This is not usually the case; a duplicate run at this maximum slide
velocity shows Higmax) = 3.7 m. Fig. 5 gives an example of the variety in
waveforms produced in the study.

In the Kamphuis and Bowering study H was measured at a minimum dis-
tance from the slide of 37 times the water depth. Probe 14 is only about 13
times water depth away from slide 909 and therefore should show a higher
wave than predicted. These heights must therefore be corrected by an atten-

5 The value of q (= 1.3) is noted to be beyond the range of experimental data (0.05 < ¢
< 1.0) of Kamphuis and Bowering.
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uation factor. Kamphuis and Bowering give equation [6] to describe wave
height decrease with distance from a slide for their experimental data. If H
is measured as 2.7 m at x/d = 13, equation [6] predicts H~ 0 at x/d ~ 37.
This, however, is an exponential correction instead of the 1/x correction
probably more appropriate for the WES study, which is more nearly an
axially symmetric case. Fig. 22 shows dimensionless wave amplitude versus
dimensionless distance as observed from WES runs for the maximum (Vi =
27 m/s) and minimum (V;,, = 11 m/s) slide velocities at site 909, along with
d/r functions plotted as before. For Vyin, n/d = 0.097 (d/r), or n/dl, ja~37 =
0.00262; if d = 94 m, n = 0.25 m, instead of 0.9 m, the actual value at probe
14. For V.., n/d = 0.307 (d/r) or n/dl,jq~37 = 0.0083; that is, n = 0.8 m
instead of 2.7, the actual value at probe 14 for WES run 129. These ampli-
tudes may be taken as “stable wave heights’ since these are solitary waves.
Summarizing, predicted values of Hy, are 29 and 15 m for maximum and
minimum rib 909 slide velocities respectively, and observed values corrected
to “stable wave heights” are 0.8 and 0.25 m. Thus these two stable wave
heights predicted by Kamphuis and Bowering are 36 and 60 times as large,
respectively, as observed values from the WES study.

At least part of the difference may be attributed to the different gecm-
etries involved in the two cases. Probe 14 in the WES study senses waves trav-
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eling at an angle of 90° to the direction of slide emplacement, whereas Kamp-
huis and Bowering data are for wave heights in front of the slide. Also, as
discussed previously, the WES model waves for rib 909 propagate through
about 90° arc whereas Kamphuis and Bowering waves are confined to a two-
dimensional channel. Finally, the WES slide is porous, whereas the Kamphuis
and Bowering slide tray is not. All these differences would produce lower
waves in the WES study; nonetheless, the magnitude of the discrepancy is an
indication of the difficulty of the prediction problem.

Next, predictions of n,., based upon Noda’s vertical box-drop theory are
compared to maximum wave amplitudes generated by the model slide at rib
909. With water depth at the slide site about 94 m, slide Froude numbers
range from 0.4 to 0.9, and A\, /d ~ 1. These values fall in regions C and D of
Fig. 11, and therefore from Table II, solutions for the maximum wave
should be at x/d = 5 and x/d = 0, respectively. As an example, if slide veloc-
ity V equals 11.83 m/s, F = 0.36, and using x/d = 5 in Fig. 7, Nmax/Am = 0.31,
or if Ay, ~ 90 m, Npmax ~ 28 m. Alternatively if slide 909 is modelled as a
wall moving horizontally into the reservoir, equation [3] may be used to
calculate predicted maximum wave amplitudes.

Predicted values for both the vertical and horizontal models of Noda are
plotted in Fig. 23 against the observed maximum amplitudes of probes 2—4
in the WES study. The large jump in predicted values for the vertical box-
drop case is a result of shifting ffom region C to D in Fig. 11 and underlines
the fact that these are order of magnitude predictions. Vertical box-drop
solutions overestimate maximum wave amplitudes by about a factor of 4,
and horizontal solutions overestimate by a factor of 7. Reasons for the dis-
crepancies must certainly include these differences between Noda theory and
WES model: (1) the model 909 slide enters the water neither vertically or
horizontally, (2) its thickness is less than the water depth, (3) wave energy is
distributed in three dimensions, and (4) the slide mass has a porosity. All
combine as Fig. 23 illustrates to produce lower wave heights in the WES
model than predicted by theory.

Raney and Butler tested their numerical model by comparison with these
same WES data. Fig. 24 gives the first-wave amplitudes observed for thirteen
probes in the study versus the calculated wave amplitudes of the numerical
model. The regression equation has a slope of 1.21 + 0.46 at the 95% confi-
dence level and r, = 0.85; the fit appears quite favorable. The average differ-
ence in the amplitude of the first wave was 25% and an average difference of
time of arrival at a probe was only 9%. Raney and Butler (1975, p. 23)
conclude, ¢...the numerical model is capable of modeling landslide-gener-
ated water waves to a sufficient accuracy to allow overall engineering deci-
sions to be made concerning the possible effects of a potential landslide. The
most important parameters to be considered are the volume of the landslide,
its velocity, and the final position of the slide in the reservoir.”

The rate of decrease of wave height with distance for the WES model data
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Fig. 23. Maximum wave amplitude observed at gages 2—4 in WES Lake Koocanusa study
versus maximum wave amplitudes predicted by Noda theories, for runs using rib 909.
Circles are from vertical drop model and squares are for the horizontal moving wall
model. The line represents a one to one correspondence.

Fig. 24. Relationship for first-wave amplitudes (n¢y,) observed at various gages in WES
Lake Koocanusa study for one run versus wave amplitudes predicted by Raney and Butler
numerical model. Slope of regression equation is 1.21 + 0.46 and y intercept is —7.6
15.2. Therefore, the possibility the regression equation demonstrates a one to one corre-
spondence cannot be excluded.

(Fig. 22) appears to follow a simple inverse function of distance as predictgd
by Kranzer and Keller. Irregularities do occur however, due to bathymetric
changes and piling up along the dam face. Even without these irregularities
there is really no well-defined stable wave height as used in the two-dimen-
sional experimental studies. ’

All studies predicted that when a wave train is formed, the leading wave
is the highest. The WES data do not follow this pattern (Davidson and Wha-
lin, 1974, appendix B, sheet 17). Close to a slide, as many model trials had
the first wave highest as not, whereas for probes further away, the first wave
was generally not the highest. Most likely this is the result of changes in
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waveform due to shoaling of waves along the basin margins and wave rein-
forcement from reflected waves.

As discussed previously, Law and Brebner found a relationship between
wavelength (and thus period) and slide energy parameter whereas Kamphuis
and Bowering did not. The Unoki and Nakano, and Kranzer and Keller
theories also show no dependency. Prins (1958, figs. 3 and 4) showed experi-
mentally that period increased slightly as impulse width (thickness) increased
but was not dependent upon other slide factors. Fig. 15, from Law and Breb-
ner, illustrates that period increases with increasing slide energy even for con-
stant thickness. To explore the relationships between wave period at a point
and slide energy, periods from the WES data of the first two waves and
second and third waves for probe 14, and second and third waves for probe
11 were plotted against slide velocity, all other factors constant. Over the
range of velocities tested, there is no statistically significant correlation
between dimensionless slide kinetic energy and wave period. Wave period
does increase with increasing distance from the slide as predicted by both the
theoretical and experimental studies (Davidson and Whalin, 1974, appendix
B).

Lastly, we compare run-ups predicted by the Hall and Watts empirical
formula to observed maximum run-ups on the reservoir side opposite rib
909. The slope on land nearest probe 6 (see Fig. 17) is about S = 0.2. An
example calculation with a wave amplitude i, = 6 m at probe 6 in water
depth,d = 18 m, is:

0.35

Reare = [11(0.2)*¢76(6/18)1-2( """ ~11 = 21'm

The experimental run-up directly landward of probe 6 is estimated from Fig.
25, run 126, to be about 12 m. In Fig. 26, maximum run-ups on the reser-
voir side opposite slide 909 are plotted versus wave amplitude at gage 6 (cir-
cles). The relationship is a straight line of slope 3 or is slightly convex up-
wards. Also plotted is the predicted relationship from Hall and Watts which
is virtually a straight line of slope 3.7 falling above the WES data. But this
formula applies only to a solitary wave breaking parallel to a hydraulically
smooth shore of constant slope and not to water surges where all water par-
ticles in the water column translate forward causing a water surface bulge at
a boundary. Especially important also is the increase in slope in the WES
model as the run-up increases, which should produce lower observed run-ups
than predicted. However, since this is the maximum run-up, the values are
probably inflated because of convergence in topographic embayments. The
difference in observed versus predicted values could be a result of any one of
these complicating factors. Nevertheless, run-ups predicted from the Hall and
Watts formula compare favorably to those observed in the study.
Summarizing, predicted ‘stable wave heights” from Kamphuis and Bow-
ering overestimate, by more than an order of magnitude, heights observed in
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Fig. 26. Plot of maximum run-up on southwest side of model reservoir in WES Lake Koo-
canusa study versus wave height at gage 6 (see Fig. 17 for location). Empirical data for rib
909 slides of varying velocities are shown as circles. Relationship of Hall and Watts is also
plotted as squares and predicts higher run-ups than observed.

the WES model study; predictions of maximum wave amplitude from both
Noda and Kamphuis and Bowering approaches also greatly overestimate ob-
served WES values, but by somewhat less than an order of magnitude.

Raney and Butler numerical model predictions are only an average 25%
different from those observed. The rate of decrease of wave height with dis-
tance in the WES study follows a simple inverse function of distance from
the slide as predicted by Kranzer and Keller theory but contrary to Law and
Brebner and Kamphuis and Bowering data. The leading wave is not generally
the highest, contrary to predictions by Law and Brebner, Kamphuis and
Bowering, and Noda. WES data show no relationship between slide velocity
and wave period, supporting Kamphuis and Bowering, Unoki and Nakano,-
and Kranzer and Keller but contradicting Law and Brebner. Finally, run-ups
predicted by Hall and Watts compare favorably with maximum run-ups ob-
served in the WES study.

EMPIRICAL RELATIONSHIPS FROM WATERWAYS EXPERIMENT STATION STUDY
The WES data apply strictly only to one particular basin geometry and a

limited range of slide characteristics. The extent to which the landslide ma-
terial adequately simulates prototype conditions is poorly known and wave
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Fig. 27. Relationships of maximum wave amplitude observed at probes in the WES Lake
Koocanusa study as a function of dimensionless slide kinetic energy. Symbol key: ® =
rib 927 slide, n at probe 14(r/d ~ 7); ® = rib 909 slide, Ny, at probe 14(r/d ~ 13); 4=
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slides, 0.002-m3 bags of model landslide material, water depth of reservoir = 79 m, NMmax
of probes 9—13; + = rib 927 slide, 0.002-m3 bags of model slide material, Nmax of probes
9—13; A = rib 927 slide, 0.009-m3 bags of model slide material, Ny, of probes 9—13. Un-
less otherwise specified, water depth of slide sites is 94 m. Note that different landslide
material gives different wave heights for equivalent slide energies.

height values are a composite of reflection and refraction processes. Most
disturbing is that duplicate runs do not always give duplicate results. How-
ever, the experimental arrangement is sufficiently realistic to make it appeal-
ing as a source of predictive equations more general than the experimental
and analytical theoretical studies previously discussed. At a minimum these
data illustrate the range in wave amplitudes for various slide characteristics in
a three-dimensional situation with realistic wave height attenuation func-
tions. Then too, modelling a landslide as discrete bags of shot is probably
more realistic than using a tray or box with an imporous planar front.
Finally, use of these data allows a choice of two different slide-basin geom-
etries with which to match a particular prototype situation.

In view of these considerations, we have plotted in Fig. 27, dimensionless
slide kinetic energy ¢ (KE) for various WES slide sites and model slide ma-
terials versus dimensionless maximum wave amplitudes at two distances from
the slide. Effective slide thicknesses are estimated as: 0.4 < h/d < 0.8.

6 Dimensionless slide kinetic energy is defined here as 3 (I - h - w/d®)(ps/p)(V?/gd).

X
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Fig. 28. Relationship of maximum wave amplitudes (r/d ~ 2—4) as a function of slide
dimensionless kinetic energy. Rib 909 slides, denoted by squares have their KE doubled
to simulate propagation of waves through 180°. Rib 923 slides are denoted by circles and
rib 923 slides with a reservoir depth of 79 m are denoted by triangles. Normal reservoir
depths at the slide sites are 94 m. The regression equation is significant at the 99% level.

The range of wave heights for a given kinetic energy is in part due to vari-
ous probe r/d values and is also Because for a similar slide and r/d, 0.002-m?
bags of landslide material give lower wave heights than 0.009-m> bags. The
angle between the sliding direction and radial azimuth from slide front to the
probe also appears important.

Fig. 28 is a plot of Nmax/d (at r/d ~ 2—4) vs. dimensionless kinetic energy
for slides 909 and 923. For waves which propagate through less than 180°,
the kinetic energy should be adjusted accordingly. The 909 slide kinetic
energy has thus been doubled to make these data, where waves can disperse
only through 90°, comparable to the 923 data where waves propagate
through 180°. Slide 927 data were excluded from the plot because maxi-
mum wave heights were influenced by a shoaling bottom opposite the slide.
A least squares linear regression on the logged data gives rp, = 0.8, which is sig-
nificant at the 99% level. Predictions based on the regression equation:

10g(Mmax/d) = a + b 10g(KE) [10]

are calculated in the next section. (For coefficients a, b, see Appendix 3.)

FIELD STUDIES

Table III gives examples of large waves generated by rock masses sliding
into water. Some model studies were made concerning movements of the
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Gepatsch reservoir slope in Austria (Lauffer et al., 1967). In addition, at
least one site of potential wave hazard is presently being studied in the
United States (Baker Lake, Washington; Easterbrook, 1975), and one in
Canada involving the Downie prehistoric slide mass (cf. Chapter 10, Volume
1). Slide-induced wave hazards at the Mica Dam in Canada have also been
recently examined by model studies (see Appendix 3).

In this section we attempt to quantitatively hindcast waveforms for
selected field cases. Unfortunately, few of the cited slides fulfill enough of
the simplifying assumptions or are well enough documented to accomplish
this. The Vaiont and Steinsholt slides clearly violate assumption (2) of
Noda. They are large in relation to water volume of the reservoir. Also, many
cases have waves generated whose main direction of travel is highly oblique
to the direction of sliding; neither the Noda theory nor the empirical results
based on flume experiments account for this, as evidenced by comparison
with WES data.

To hindcast wave type, maximum or stable wave height, wavelength, and
celerity for a slide, the minimum information needed would be slide velocity
(maximum, or at impact), slide width, height, and thickness, slide density,
basin bathymetry, and the angle at which the slide entered the water. For
estimates of the amount of run-up along a shore, the slope and roughness at
that point must be known. The 1958 Gilbert Inlet slide and waves in Lituya
Bay are well enough documented to provide reasonable estimates of these
values, and that event will be the major hindcast example. Following that we
attempt to analyze the Disenchantment Bay glacier avalanche and some
better known Norwegian landslides.

Case I: Lituya Bay, Alaska

Geographic and geologic setting

Lituya Bay is a T-shaped inlet that cuts through the coastal lowland and
foothills belt flanking the Fairweather Range of the St. Elias Mountains on
the south coast of Alaska (Fig. 29). The bay fills and slightly overflows a
deep depression only recently occupied by a piedmont glacier of which
Lituya, Crillon, and Cascade glaciers are remnants (Figs. 30, 31). Around
the head of the bay the walls are glacially oversteepened, and fjord-like,
rising to altitudes between 700 and 1100 m in surrounding foothills (Fig.
33). Submarine contours based on U.S. Coast and Geodetic Survey sound-
ings in 1929 and 1940 show a pronounced U-shaped trench with steep walls
and a broad flat floor sloping gently downward from the head of the bay to
a maximum depth of 220 m (Fig. 30). Minimum depth at the entrance is 10
m at mean lower low water.

Weather records from the nearest stations (Cape Spencer, at Yakutat; Fig.
29) suggest total annual precipitation from 281 to 340 cm and near-annual
temperatures about 40°F.
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Fig. 29. Map of southeastern Alaska, showing locations of Lituya Bay and Disenchant-
ment Bay (after Miller, 1960).

The Bay transects a geologic province involving sedimentary rocks of Ter-
tiary age. The two arms forming the “T” at the head of Lituya Bay are part
of a great trench, the topographic expression of the Fairweather fault (Mil-
ler, 1953). This fault in the vicinity of Lituya Bay is vertical or dips steeply
to the northeast; along it the crystalline rocks exposed on the northeast side
are inferred to have moved up relative to less altered and in part younger
rocks to the southwest (Fig. 30). Large-scale systems of inward-dipping, con-
jugate faults exist in the fissured slopes along the Fairweather Fault, sugges-
tive of downslope extension, i.e., “‘spreading ridges’’ as cited by Beck (1968;



360 - : : R.L. SLINGERLAND AND B. VOIGHT

¢f. Chapter 17, Volume 1). The walls have been buttressed by glaciers until
recently; radiocarbon dates on high moraines are less than 1000 years B.P.,
suggesting retreat of glaciers only in the last millenium (G. Plafker, oral com-
munication, 1975).

Movement along the Fairweather Fault is considered to have been associ-
ated with an earthquake that directly preceded the 1958 wave (Tocher and
Miller, 1959), with the epicenter located about 12 km east of the fault trace
and 21 km southeast of Lituya Bay (Brazee and Jordan, 1958, p. 36; how-
ever, see Stauder as cited by Miller, 1960, p. 55, for revised location).

The 1958 Gilbert Inlet rockslide and resulting wave event

Beginning about 10:16 p.m. local time, July 9, 1958, the southwest side
and bottom of Gilbert and Crillon Inlets moved northwestward and possibly
up relative to the northeast shore at the head of the bay. Total movement as
much as 6.4 m horizontally and about 1 m vertically was noted from surface
preakage 8—16 km south of Crillon Inlet (Tocher and Miller, 1959). Intense
shaking in Lituya Bay continued from 1 to 4 minutes, the range of estimates
of two eyewitnesses anchored in the bay. Within 1—2.5 minutes a large mass
of rock slid from the northeast wall of Gilbert Inlet (Fig. 31) causing a
““deafening crash” reported by one of the eyewitnesses. The rockslide —
judged by Miller to be near the borderline between “rockslide” and “rock-
fall”” as defined by Sharpe (1938, pp. 76—178) and Varnes (1958, pp. 20—32,
plate 1) — occurred in an area of previously active sliding and gulleying to an
altitude of about 914 m on a slope averaging 40°. The rocks are mainly
amphibole and biotite schists; bedding and schistosity strike about N50°W
and dip steeply northeastward, into the slope. Slide surfaces thus probably
predominantly involved joint or fault surfaces transecting bedding. The
dimensions of the slide on the slope as mapped by Miller seem fairly accur-
ate, but the thickness of slide mass normal to the slope could be estimated
only roughly (Miller, 1960, p. 65). The main mass of the slide presumably
involved a prism of rock roughly triangular in cross-section, with width
dimensions of 732—915 m, length measured down the slope of 970 m,
maximum thickness of 92 m normal to the slope, and a center of gravity at
about 609 m altitude (Fig. 32). Miller estimated the volume from these
dimensions to be 30.6 X 10° m3 — about the same size as the Madison
Canyon, Montana, slide (see Chapter 4, Volume 1) — and assuming a specific
gravity of 2.7, a weight of 82X 10¢ metric tons. It is highly probable that
the entire mass plunged into Gilbert Inlet as a unit at the time of the earth-
quake, although the available data require only that the event occur between
noon on July 7 and the morning of July 10. Loose rock debris on the fresh
scar was still moving at some places on July 10, and small masses of rock
were still falling from the steep rock cliffs at the head of the scar.

The impact caused a huge sheet of water to surge up over a high spur on
the opposite side of Gilbert Inlet (Figs. 31, 33b, 34); a large gravity wave
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with a steep front was set into motion, traveling at high velocity. The wave
‘ struck first against the south side of the bay near Mudslide Creek (Figs. 31,
i 33) with maximum run-up over 200 m, and was then reflected towards the
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Fig. 32. Cross-section through Gilbert Inlet at head of Lituya Bay, showing rockslide
on northeast wall. Surge crossed high spur bounding Gilbert Inlet on southwest.
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Fig. 33. (a) Lituya Bay, 1954. Trimlines of 1936 giant waves of unknown origin (g) and
1853—1854 (k). Lateral moraines (m) and end moraine in foreground record recent
advance of ice to bay mouth. (b) Lituya Bay, August 1958 (after Miller, 1960). Wave
generated on July 9 by rockslide (r) destroyed forest to maximum elevation 524 mat d
and to a maximum distance of 1100 m in from high-tide shoreline at Fish Lake (F). Fish-
ing boat anchored at b was carried over spit; boat at entrance was sunk, and boat at e
rode out the wave.
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Fig. 34. Rockslide plunged into Gilbert Inlet at lower right corner, shearing off part of
Lituya Glacier, and causing water to surge over high spur in photo center (after Miller,
1960). View to west, August 1958. Trimline cuts across old slide scars on spur.

north shore, and again back to the south shore near Coal Creek. Estimates on
elapsed time from first sighting of waves to arrival at eyewitnesses positions
suggest an average speed of 156—209 km/hr (Miller, 1960, p. 64). Midway
between the head of the bay and Cenotaph Island, wave amplitude was
about 30 m and the wave crest was 8—15 m wide. After passing Cenotaph
Island maximum wave height decreased to perhaps 15—23 m with the back
slope of the wave less steep than the front. The wave then traveled over La-
Chaussee spit, taking a trolling boat (the ‘‘Badger’’) with it at an estimated
height of “two boat lengths’’ (24 m) above the trees growing on the spit.
Following the passage of the giant wave, the bay water returned to about
normal water level but continued to surge for about 25 minutes, with steep
waves up to 6 m high. The estimated wave speed seems in good agreement
with the theoretical speed as calculated from C = +/g(d + 1), where g is
acceleration of gravity, d is depth of water, and 7 is amplitude of wave above
sea level.

The highest point on the trimline on the spur was at 524 m altitude (Figs.
31, 34), nearly eight times the maximum height reached by the largest of the
celebrated Norwegian slide-generated waves (Table III). The initial report of
wave damage at this elevation was thus at first widely doubted (Miller, 1960,
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p. 64), but re-examination of the area from the air and on the ground con-
firmed the initial supposition. Minor sliding of the spur occurred both before
and after the water swath destroyed the forest cover.

Other alternative wave-generating mechanisms were considered, but seem
less acceptable than the rockslide mechanism. An eyewitness account and
configuration of the trimlines indicate approximately radial wave propaga-
tion from a point source in Gilbert Inlet. The size of the slide, water depth,
and dimensions of Lituya Bay are compatible with the generation of a wave
similar to a solitary wave (R.L. Wiegel, in Miller, 1960, pp. 65—66).

The thoroughness of the destructive effects of the wave are described in
detail by Miller (1960, pp. 60—63). The forest cover was stripped nearly to
the limit of inundation (Fig. 31), to a maximum of 1100 m inland from the
high tide shore line. In most places the trees were washed out and trans-
ported away, leaving bare ground. In some places trees greater than a metre
in diameter were broken off cleanly above the root system. Many of the
felled trees were reduced to bare stems, with limbs and roots removed and
bark stripped by water at high velocity or pressure. The total area over which
the wave was capable of such destruction was about 10 km? compared to
total area of inundation of 13 km?. About 0.3 m of soil on average was
removed between the trimline and shore, amounting to about 3 X 10% m>.
Two of three fishing boats in the outer part of the bay were sunk, and
two persons were killed.

Wave hindcast for Lituya Bay

Table IV summarizes the available data. A wave amplitude of 30 m at
r/d ~ 30—40 was estimated by an eyewitness on a fishing boat at the
entrance to Lituya Bay. This is a precarious position from which to be esti-
mating wave amplitude; possibly a more accurate estimate of wave height
can be back-calculated from observed run-up. Field observation and model
studies by Wiegel (see below) suggest that a large gravity wave moved in a
straight path nearly due south impacting near Mudslide Creek (Fig. 31). Ob-
served prototype run-up at that point is about 183 m, the slope is about 1.1
and the depth offshore is 146 m. The wave amplitude necessary to produce
this amount of run-up is, according to the Hall and Watts formula, n = 64
m at about r/d ~ 22 7. This seems a minimum estimate insofar as no rough-
ness due to shore irregularities and vegetation is considered and because the
wave must have struck the shore obliquely at this point.

First, using Noda’s theory and his approach to the Lituya problem, if
Vi = 56 m/s and v/gd = 35 m/s, the slide Froude number = 1.6.If A, =38
m, A\ /d = 0.31, which places the solution in the nonlinear transition region
B of Fig. 11. Table II suggests for this region that a linear solution be used at

7 See Table V for calculations. The slope component parallel to the direction of wave
advance is 0.7.
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x/d = 5 regardless of the actual x/d. Therefore from Fig. 7, Nmax/Am = 0.35
for F = 1.6 and N,y is only 13 m. If V,, = 69 m/s is used, Nyax = 14 m.

These calculations differ from those of Noda (1970, p. 847) in having
lower slide velocities and thickness values. The velocity as estimated above
seems more appropriate than solutions based on frictionless transport (see
Appendix 2); nevertheless, the solution is not particularly sensitive to this
parameter. A slide velocity about a third again as large barely increases the
wave amplitude a metre. If the slide was 92 m thick (maximum reported
val}le), however, instead of 38 m, A\,,/d = 0.75, which places the solution in
solitary wave region D for V;,. The linear solution for x/d = 0 (Fig. 8)
sugggsts NMmax/Am = 0.93, hence, .« = 86 m, somewhat greater than the
(minimum estimate of) wave amplitude necessary to produce the required
run-ups at r/d = 22. For A\, = 92 m, and Vy,, Nmax = 88 m. Since the model
estimates maximum wave amplitude and is a two-dimensional approxima-
tion, it should give conservative results far away from surge effects; the am-
plitude prediction is therefore possibly consistent with prototype estimates.
The range of model results thus illustrates the sensitivity of predictions
based_on the Noda vertical box drop theory to the thickness parameter. Of
most importance to the prediction is identification of the appropriate wave
characteristics region. For V,,,/\/gd = 2, region B is indicated for \,,/d <
0.43, whereas region D is indicated for A, /d > 0.43 (Fig. 11). Corresponding
solutions [linear solution for x/d = 5 for region B; linear solution for x/d = 0
for region D (Table II)] are discontinuous at region boundaries. Thus for
Am = 52 m (region B), predicted Nmax = 0.35(52) = 18 m, whereas for \,, =
53 m (region D), predicted Ny, = 0.96(53) = 50 m. For the Lituya case, the
observed solitary wave implies that region D is appropriate which in turn sug-
gests the effective slide thickness was greater than 53 m. This thickness value
seems reasonable in view of estimates of slide dimensions and the possibility
of bulking at the front of the slide with penetration into the water body.

If the actual effective slide thickness, A\,,, was closer to the estimated
maximum value of 92 m, in water of depth 122 m the slide could effectively
act as a wall moving horizontally into Gilbert Inlet (Fig. 33). This suggests
the possibility of using the horizontally moving wall theory of Noda. 8 Equa-
tion [3] rewritten is: :

Nmax = 1.32 d(V/A/gd)

or for Vi, and Vy, Nmax = 261 and 321 m, respectively. These presumably

should occur at a distance of x/d = 2 or over 200 m in front of the slide.
From Kamphuis and Bowering, g = (I/d)(hx/d) = 2.5 and 6.0 for hy, = 38

and 92 m. From equation [5], for A, = 38 m and V;,, = 56 m/s, 7 ./d =

8 .

Some a}ssumptlor}s of Noda theory, especially small displacements relative to depth, are
clearly violated. With regard to maximum wave amplitude, Noda solutions indicate minor
decay in the range x/d = 2—5.
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(1.6)%7(0.31 + 0.2 log 2.5) = 0.54 or H,, = 0.54(122) = 66 m. Similarly for
Ve, = 69 m/s, Hy, = 77 m. If hy = 92 m, for Vi, Hyy = 79 m and for Vj,,
H,, = 92 m. These values based upon d = 122 m, and others based upon d =
140 m°® are compatible with estimates based on run-up; however, the
approximation is two dimensional, and 6 > 30°, both of which should make
upper-bound predictions. We note that g is beyond the range of experimen-
tal data (0.05 < q < 1.0). _
For an estimate of maximum wave heights, arbitrarily taken at x/d = 4 un-
less otherwise stated, for by = 92 m, d = 122 m and V,,, equation [6] gives:

H_,./d=0.75+0.35 ¢ *%® =1.00

Thus H,,,x = 122 m. Similarly for by = 38 m,d =122 m and Vy,, Hmax = 108
m.

We may also use equation [10] to predict maximum wave amplitudes;
h/d is in the same range as the model data (0.3—0.8). Dimensionless kinetic
energy of the Gilbert Inlet slide for V;n, is:

6 2
1(806X10Y 7 6 _)_gq
2 1223 9.8 -122

This situation is in some ways geometrically analogous to the WES rib 909
slide where waves could propagate only through 90°; when applied to equa-
tion [10] the kinetic energy should possibly be doubled, giving Nmax =
1.69(122) = 206 m: For V,, KE=91X2=182 and from equation [10]
Nmax = 2.27(122) = 277 m. These amplitudes seem large, but certainly credi-
ble in view of surge and run-up observations. Non-doubled KE suggests am-
plitudes of 126 and 169 m. _

The hindcasts have been summarized in Table V. Since the best slide
velocity estimate is probably between V;, and V,, the two wave heights
given should bracket the true value. The predicted maximum wave heights
range from 13 m for a thin slide modeled by Noda vertical box-drop theory

to 321 m estimated by Noda’s horizontally moving wall theory, a twenty- -

five fold increase. The larger estimates are enormous waves, but then Figs. 31
and 34 show that the trimline on the spur opposite the slide was at 524 m,
an impressive elevation for water wave surge to strip forest cover.

The estimated minimum stable wave height at r/d ~ 14—30 is 64 m. Foot-
note ¥ of Table V shows for this case that if wave height attenuation follows
an inverse function of distance from the slide, the wave height at r/d ~ 4
should have been 224 m !°; this solution is a kind of upper bound, inasmuch

9 See Table IV for explanation of various depths.

10 According to Ippen (1966), a solitary wave will begin to break when (H/d)max = 0.78,
or, if for this case d = 122 m, the maximum nonbreaking solitary wave would be 95 m in
height. Therefore we mean to imply here only that the back-calculated wave heigl::t would
have ideally been 224 m. However, a larger wave could form that need not be solitary nor

stable.
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as wave propagation was not radial but was restrained by the irregular geom-
etry of the bay. A lower bound is given by the function describing two-
dimensional attenuation, i.e. equation [6], which gives for a maximum wave
height at x/d ~ 4, H/140 = (64/140) + 0.35 e %°*® or A, = 100 m.

Theory may be adequate to predict the enormous surge wave on the spur
at Gilbert Inlet (Fig. 34; see footnote, Table V). Wiegel (in Miller, 1960, pp.
65—66) constructed a 1 : 1000 scale model and conducted model experi-
ments. His results suggested that the prototype slide must have fallen vir-
tually as a unit, and very rapidly; if these conditions were met experiments
showed that a sheet of water washed up the opposite slope to an elevation
about three times water depth. At the same time a large gravity wave ‘‘sev-
eral hundred feet high’” !! moved in a southerly direction, causing a peak rise
in the vicinity of Mudslide Creek much as observed. The wave then swung
around into the main portion of Lituya Bay, due to refraction and diffrac-
tion. Movements of the main wave and tail were additionally complicated
due to reflections, but scale modelling apparently produced a good approxi-
mation to the Lituya event.

Judging from these data the maximum wave height should have been at
least about 100 m; it might have been twice that high. The correct order of
magnitude is therefore predicted by Kamphuis and Bowering and KE empiri-
cal function hindcasts, with the former giving values near the lower-bound
estimate. Some Noda solutions “are similar; however these predictions are
very sensitive to assumed values of the thickness, as discussed previously.

Cenotaph Island, in the center of Lituya Bay, provides a prototype case
most similar to the model for the comparison of observed versus predicted
wave run-ups. There, an estimated 30-m solitary wave traveling down the bay
in water about 140 m deep, shoals on a fairly uniform slope (S = 0.1; depth and
slope calculated from U.S. Coast and Geodetic Survey Chart 8508, 1972; cf.
Fig. 30). Using the Hall and Watts formula:

R/30.5 = 11(0.1)°67 (30.5/140)[1-9¢0-1%-3%~1]

or

R=90m

From Fig. 31 the trimline on Cenotaph Island was about 29—49 m above
mean sea level. Considering that the trimline is the upper limit of forest
destruction, this value should be less than the predicted run-up because of
roughness and energy dissipation from trees. Therefore, the predicted value
seems satisfactory.

Wiegel (in Miller, 1960, p. 67) estimated the energy of a solitary wave 30

11 Note that this figure is in excellent agreement with wave heights back-calculated from
run-ups at Mudslide Creek and the spur at Gilbert Inlet.
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m high in water 120 m deep with a channel width of 2400 m to be about 8.2
X 102 J. 12 Wiegel estimated the potential energy of the slide at 4.6 X 10'*
J (which for assumed free fall is the same as the kinetic energy '*), and sug-
gested that the total wave energy of the first solitary wave was about 2% of
the kinetic energy of the slide upon impact. However, this estimate is based
upon a questionable free fall velocity. If V}, = 64 m/s is used, slide kinetic
energy is 1.69 X 10'* J and the wave energy is about 5% of this value.

Case II: Fallen Glacier, Disenchantment Bay, Alaska

While conducting studies of Alaska tidewater glaciers in 1905, Ralph S.
Tarr documented an unusual glacier fall and its resulting waves (Tarr, 1909,
pp. 67—68):

“On the western wall of Disenchantment Bay, between Black and Turner glaciers,
three small glaciers were perched in short, steep hanging valleys [Fig. 35; see Figs. 1
and 29 for location]. Their slope was so steep and they had such an appearance of
instability that they attracted particular attention. The southernmost of these was
estimated to have a length of approximately a mile, its chief supply coming from a
steep mountain crest from which the snow slides into a cirquelike amphitheater
about halfway down the slope. The glacier was photographed from the crest of
Haenke Island by Russell, 1890; by Brabazon, of the Canadian Boundary Com-
mission, in 1895; and by Gilbert in 1899. Attracted by the steep inclination of the
three perched glaciers, the Survey party photographed this mountain side from the
bay on July 3, 1905, which happened to be the last day in the life of the southern-
most of the three.

This glacier, which I will call Fallen Glacier, lay for the most part in a cirquelike
amphitheatre with steeply rising mountain walls at its head [Figs. 35,2,36]. The
amphitheatre has a narrow mouth, out of which the crevassed terminus of the gla-
cier protruded, the lower end terminating at an elevation of about 1000 feet above
the fiord, from which it was separated by an ice-steepened rock slope. Aside from
its apparently instable position, there was so little to attract special attention to
this glacier that no detailed observations were made on it.

A moderate rain fell during the night of July 3 and continued during July 4. On
the latter day, when working in Russell Fiord, about 15 miles 14 from Fallen Gla-
cier, I was surprised by the appearance of a series of waves far too pronounced and

12 From Ippen (1966), for a solitary wave:
total energy = [(8/3v/3) YH®'?d®/? tt-1bs/ft of crest width]  crest width

= (8/3v/3) * 62.4 * 10032 + 40032 + (8000) = 6 X 10'? ft-Ibs = 8.2 X 10'*J
13 Kinetic energy =4 mV? =1 + 2.7 X 10 + (30.6 X 10%) + 1062 = 4.6 X 10 J.

14 The value of 5 miles appears possibly more consistent with these observations and
photographs taken on July 5 (Tarr and Martin, 1914, plate XLVII).
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Fig. 35. (a) Hanging glaciers on west side of Disenchantment Bay, from Haenke Island
(1891 photo by I.C. Russell, No. 523, U.S. Geological Survey; see Fig. 1 for location).
Fallen Glacier immediately above fisherman. (b) Comparison of above, photographed in
August 1959 from station Haenke A (see Fig. 1) near summit of Haenke Island (F-59-
R100, courtesy W.O. Field, the American Geographical Society). The glacier has reformed.

lasting far too long a time to be ascribed to iceberg origin. The water rose and fell
from 15 to 20 feet, and the disturbance lasted for fully half an hour. At the time I
could think only of earthquake origin for the waves, but the next day one of the
Indian guides returning from Yakutat, reported the falling of a glacier in Disen-
chantment Bay. Later in the season, returning to the west side of Disenchantment
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Fig. 36. Portion of Yakutat (D-5) 15’ Quadrangle, 1959, U.S. Geological Survey, showing
Fallen Glacier (arrow) and Disenchantment Bay. Note sparse bathymetric data, based on
1906 surveys.

Bay, it was found that the glacier which had fallen was the southernmost of the
three small glaciers described above.

The valley was almost completely emptied of ice, there remaining only a mere
remnant of the steeply perched neve area and some minor ice fragments near the
edge of the cirque. The entire glacier had evidently shot out of its valley, tumbled
a thousand feet down the steep slope, and entered the fiord, generating a series of
pronounced waves. The walls and bottom of the cirque were bare of ice and dis-
tinct evidence of the avalanche was present on the sides of the narrow throat of the
amphitheatre out of which the glacier shot. Emerging from this throat the avalanche
had spread out fan-shaped, sweeping all soil away, and near the fiord killing the
alders over an area half a mile in width. Since the fiord is evidently deep at this
point, only a small remnant of the avalanche was visible at the time of visit, most of
the ice having floated away and the debris sunk to the bottom. The coast was
pushed out slightly, with a new shore line of angular rock debris, beneath which ice
evidently remained, since in places the surface was freshly faulted by slumping.
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The water wave generated by this avalanche was of great height near its source.
A half mile south of Fallen Glacier the wave rose 110 feet, breaking off alder
bushes at that height [Fig. 1 gives these locations]. Three miles north of it, near
Turner Glacier, vegetation was killed by the wave to a height of 65 feet. About an
equal distance, on Haenke Island, the wave swept to a height of 50 or 60 feet on
the north end, and 115 feet on the northwest end of the island, washing out good-
sized alders at that level; but the latter unusual elevation was due to an especially
favorable topography which developed high breakers.”

Table IV summarizes data on the glacier fall. No documentation of ob-
served maximum wave amplitude is available and Tarr’s estimate of stable
wave amplitude is for waves which have filtered past Station Reef (Figs. 1, 2)
through Russell Fiord. Therefore we back-calculate wave amplitudes from
observed run-ups close to the glacier.

The observed run-up northwest of Gilbert Point (Fig. 1) was 9 m. The
slope as measured from the Yakutat, Alaska 15’ quadrangle map (Fig. 36) is
0.57 and the depth offshore from that point is 81 m. Thus from equation
[9], n = 4 m plus the height necessary to correct for roughness due to alders.
Similarly, a run-up of 35 m !5 on the northwestern tip of Haenke Island on a
slope of 0.3 requires a wave amplitude of 12 m in water of 81 m, and on the
northern tip, a run-up of 16.5 m on a slope of 0.21, requires an amplitude of
6 m. Thus, including Tarr’s observation, wave amplitudes at distances of r/d
= 46,51, 73, and 132, are respecfively 12, 6, 4, and 5 m.

Equation [6] gives an estimate of ., at r/d ~ 4, forn = 6 m, as:

Nmax = [g5 + 0.35 e 008%].80=26m

If 5 m is assumed to be the stable wave amplitude, calculation gives: Nyax =
25 m. However, this equation is based on two-dimensional models 16. if the
inverse distance formula of footnote ¥, Table V, is used, Mmax ~ 77 m for
r/d = 51. Thus the true maximum wave amplitude from the glacier fall was
greater than 25 m and probably closer to 77 m.

Noda’s solution for the vertical box-drop model follows:

Am/d =34/80=0.43
and for V;, = 60 m/s:

Vim/\/&d = 60/+/9.8+ 80 = 2.1

IS Value possibly influenced by wave concentration; see Tarr quotation.
16 Application of this equation obviously has its limitations. A 24-m wave is predicted
with no stable wave height at all.
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Therefore, the solution falls in region D of Fig. 11 and:
Nmax/Am = 0.95, O Npax = 32 m

For V, =83 m/s, V/gd = 8.0, and Npax = 34 m.

Irrespective of velocity, Nmax < Am, thus illustrating a peculiarity of the
Noda solution. By the Kamphuis and Bowering method Hy, values of 63 and
79 m are predicted, which are an order of magnitude greater than the esti-
mates of wave amplitude based on observed run-up. Back calculations for
Nmax Using the two-dimensional wave height attenuation function yield 83
and 99 m.

The empirical regression (equation [10]) from this report predicts for a
dimensionless kinetic energy !7 = 130—249, Nmax = 143—226 m.

The lower-bound maximum wave height (H = n for solitary wave) as esti-
mated by the two-dimensional wave height attenuation function, and the
height predicted by the Noda function are similar. However, the prediction

of greater maximum wave amplitude by equation [10] for V;,, seems on the

whole more acceptable, if conservative. Predictions based on the Kamphuis
and Bowering methods lead to apparently reasonable estimates of maximum
wave amplitudes, but overestimate wave amplitudes at large r/d by about an
order of magnitude.

Case III: Norwegian events

To further illustrate the problems of application, we compare predicted
wave heights for the catastrophic winter 1756 Tjelle event in Langfjord, Nor-
way, in which 32 perished. The slide had dimensions roughly of length =
250 m, width = 600 m, and thickness = 100 m for a volume of 15 X 10% m3.
Following continuous rain for eight days and nights it slid about 696 m
down a slope of approximately 25° into water perhaps 100 m deep causing
severe turbulence over the entire fjord, including run-up ““50 paces’, or about
40 m high (Jgrstad, 1968, p. 21). Calculating an impact velocity as before
(see Appendix 2) with tan ¢s = 0.25 gives Vi, =52 m/s, slide Froude num-
ber = 1.7 and A\, /d = 1.0. Noda theory predicts maximum wave height, Nmax
= 92 m. From Kamphuis and Bowering, ¢ = (hy/d)(l/d) = 2.5, and Hg; =
57 m. Since the “observed wave height’ is probably arun-up of a far-travelled
wave, the Noda solution may be of the correct order whereas the Kamphuis-
Bowering “stable wave” estimate is too high. This overestimation can be
explained, at least partially, since the Kamphuis-Bowering model is two-dimen-
sional whereas the Tjelle slide radiated wave energy through 180°. This then
suggests using equation [10], the empirical relationship from this report. For

17 KE = %(59 X 10%/80%) * (1/1) * (60%/9.8 - 80) = 130.

9.8
< < HOGRENDING
\7.8

Shore line
before the slide

0 1000 m atter the slide

Fig. 37. Loenvann, southwest Norway. Wave run-up data in metres after rock slide of 13
September 1936 (after Jorstad, 1968, based on map by Th. J. Selmer and G. Saetre). The
slide involved an exfoliation sheet perhaps 10 m thick and 400 m high, comprising a vol-
ume of about 10% m3, released from 400—800 m above sealevel and moving on about a
65° slope; 73 persons lost their lives. Maximum surge height was 74 m, directly opposite
the slide area.
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a dimensionless slide kinetic energy equal to 56 and wave propagation throug}'l

180°, maximum predicted wave height equals 98 m.'However, jche depth is

only approximate, and equation [10] is rather sensitive to this paramgter

since a 30% decrease of depth almost doubles 7. Note also f:hat 1§h1s apphca—

tion seems clearcut compared to other Norwegian case histories, like the
1905 Loen and 1934 Tafjord slides which moved both scree and.glacml
debris below them (see Chapter 3, this volume) and for which 'veloc1ty and
effective thickness values would be much more difficult to est{mgte, or for
the 1936 Loen slides (see Fig. 37) involving collapsed exfoliation sheets

ich fell in an irregular bay of variable depth.
WhIl{owevelr, the Ra%/l:lefjell slide of September 13, 1936 into Lc?envann, Nor-
way, does provide a test of the wave celerity equation. According to Jorstad
(1968), from eyewitness accounts of when waves passed towns along t:,he
lake, wave celerity was between 15 and 30 m/s. From c= Jg(d + m), with
mean water depth equal to 69 m, C = 26 m/s which is a close agreement
‘ 1968, p. 26).

(J¢VI;IS::S ,run-upphas )been mapped along the shores. of Lognval_an for the
September 13, 1936 landslide (Jorstad, 1968) and is given 1n Figs. 3'_7 and
38. The previous two-dimensional studies have shf)wn an gxponentlal or
geometric decrease to a stable wave height with distance. Since run-up 1s
proportional to wave height offshore, we should expect roughly the same
relationship between run-up and distance, even though these waves mpst be
refracted 90° before breaking perpendicular to shore. Inspectlon of Figs. 37
and 38 suggests that if one excludes the surging effect directly across from
the slide, the decrease to a stable run-up is obscure and of more 1rr}portance
in run-up variation is refraction, diffraction, reflection, a shadowing effect
behind promontories, and convergence of wave energy at the end of the lake.
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Fig. 38. Wave run-up data from 13 September 1936 rockslide in Lo.envann (after Jd.n'stad,
1968). Ordinate is observed run-up height, abscissa is trace of shoreline. Cf. Appendix 3.
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Eie et al. (1971) claim that maximum run-up in Fig. 38 decreases as 1/x, but
did not consider data for x > 6 km. !®

CONCLUDING REMARKS

We have discussed and compared with experimental and field data, two
theoretical and three empirical models of water waves generated by land-
slides. These models generally agree that to predict an initial waveform, the
important variables include some measure of slide energy, thickness (variable
with slide displacement) and depth of water at the slide site. The angle at
which the slide enters the water and the angle of the front of the slide are of
lesser importance.

Comparison of these models with experimental data from the Waterways
Experimental Station Lake Koocanusa study demonstrates that Kamphuis
and Bowering overestimate ‘‘stable’’ wave height by more than an order of
magnitude, and the Noda horizontal wall and vertical box drop and Kamp-
huis and Bowering solutions severely overestimate maximum wave heights.
In addition, Noda’s estimates for wave heights of nonlinear waves are very
sensitive to slide thickness such that an increase in slide thickness of less than
one metre can increase a wave height prediction threefold. Field hindcasts
suggest that vertical Noda solutions are not always conservative. The Kamphuis
and Bowering method for field hindcasts provided reasonable estimates of
maximum wave amplitude, but tended to greatly overestimate wave ampli-
tudes at large r/d where wave propagation was relatively unchanneled, as at
Disenchantment Bay. For a first estimate of potential maximum wave height,
the empirical equation [10] of this report seems about as satisfactory as the
Kamphuis and Bowering model, and has the advantage of requiring less com-
plicated data. Both seem more satisfactory than the vertical drop method of
Noda.

Regardless of the method of estimating maximum wave amplitudes, an
estimate of wave amplitude at large distance from the slide site can be cal-

culated from either the simple inverse function (see footnote *, Table V) or
the two-dimensional channel approach of equation [6], depending on basin
geometry.

For detailed wave analysis, scale models or numerical methods must be
used. The advantages and potential of the Raney and Butler numerical model
seem substantial. For the WES data this model predicts wave heights of less
than 25% difference from those observed. Unlike the analytical models, it
adequately deals with wave nonlinearity and it considers complex basin
geometries so refraction-induced wave convergence and shadowing can be

simulated. In the future, even run-up equations could be coupled to the
model.

18 Gee also Lied et al. (1976) and Jérstad (1968), for discussions of snow avalanches in
Norwegian water bodies.
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Fig. 39. Scar of rockfall at Stegane, Ardal (Norway), 21 June 1948 (photo (‘:ourtesy F.
Jorstad). Estimated volume 30,000 m?3 (ca. 100 m height X {50 m X 6 m); maximum wave
height estimated at 3—5? m in Sognefjord, with waves noticeable ?t‘g kr.n distance (§ee
Jorstad, 1968, table 3). Base of rock fall near water level, so that mltnal.lmpact velocity
was very small. Mode of collapse (e.g., toppling versus simple free-fall) is, however? un-
certain. Use of case history to test wave models is not straightforward, despite relatively
complete observational data.

However, our present inadequacy in estimating potential slide dimensions,
velocities, and modes of emplacement gives wide limits of confidence to all
models discussed. The 1948 Stegane, Norway, rockfall (Fig. 39) illustrat‘es
these problems. Although its dimensions might be fairly well known, _1ts
velocity (Vim = 0?) and mode of emplacement (vertical drop versus buckling
or toppling about its bottom edge) are problematical, and an unacceptably
wide range of waveforms could be hindcast. If the Raney and Butler mode} is
used, the history of slide emplacement must be especially well known, wh}ch
includes characterizing geometric variations due to bulking and deformaiglon
during transport, as well as velocity slowdown due to slide-fluid interaction.
However, the difficulties involved in predictions of high accuracy do not
necessarily diminish the practical value of the methods.
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Scale or numerical models, for example, can readily provide information
on physical locations especially susceptible to (or free of) wave attack even
if fine details of slide emplacement are not well known. Parameter studies,
e.g., velocity versus amplitude, can aid engineering judgment where only
broad ranges of parameter variation can be specified.

In other cases detailed results are not needed nor warranted for engineer-
ing judgment. The following ‘hypothetical’’ case history is for the reader’s
consideration. A mine is located near the shore of a small lake; directly
opposite the camp, set 400 m above lake level at the top of a 45° talus cone,
is a steep rock cliff. A noticeable increase in frequency of small rock falls
from the cliff face and widening joints suggest growing instability of a large
part of this cliff, with the potentially unstable portion involving perhaps
10% m3. A rapid assessment of the slide-induced wave potential follows:

(1) Vim ~ [2+9.8 - 566 + (0.707 — 0.25 - 0.707)] ">~ 77 m/s
(2) Assuming water depth in the slide impact area to be about 30 m:
KE =1(10%/30%) (2.7/1) (77%/9.8 - 30) ~ 100

(3) From equation [10], Npax/d > 1,

»

5 Nmax > 30 m'(to one significant figure)

Noting the possibility of run-up significantly in excess of deep water wave
amplitude, the conclusion is drawn that facilities and mine shafts within 50 m
or so of the shoreline are endangered. The recommended solution is to
evacuate humans, animals, and to bring other moveable valuables to posi-
tions of safety, until the slide mass can be released under as much control as
the situation permits (see, e.g., Bjerrum and Jo¢rstad, 1968, pp. 7—8). Em-
phasis in this case history is placed on sound judgment following well-
founded but rapid analysis, implemented immediately in order to prevent
loss of human life. Failure to deal with such an alarm quickly can lead to

drastic consequences, as described in Chapter 7 of this volume for Chungar,
Peru.
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APPENDIX 1. DERIVATION OF THE LONG-WAVE LANDSLIDE NUMERICAL
MODEL

This derivation follows those of Leendertse (1967) and Raney and Butler
(1975). From conservation of mass the continuity equation in a rectilinear
Cartesian coordinate system (Fig. A-1) is, if fluid density is assumed con-
stant:

u v oW _y, [A-1]
ax 0y 0z

To eliminate the z direction equation [A-1] is integrated over the z-axis
from —d to 7, giving:

f"[a_”ﬁhajﬁ]dz:o [A-2]
ox  dy 9z

—d

Term by term:

ma ou
f M az=(d+n)— [A-3]
0x 90X

—d

DISPLACED WATER SURFACE

zZ,wW

INITIAL RESERVOIR SURFACE

Fig. A-1. Coordinate system for Raney-Butler model.
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17 v

—dz=(d+n) — [A-4]

L4 0y oy
and

mow n
f —dz=w [A-5]
J, 02 —d

where u and v are the horizontal velocity components averaged over the

whole water column. wl,-, is equivalent to the total derivative of n(x, y, t)
with respect to time, or:

_dn_on om dx on dy

Yle=n =9 "%t 3
x dt oy dt

Since u; = dx/dt and v, = dy/dt, where the subscript s denotes the horizontal
velocity component at the free surface:

on an on
Wle=n =~ *Us —+ Vs~ A-6
oot ax oy [A-6]
Similarly:
a(d o(d
wz=d=uf—(")+vf —( ) [A-7]
0x oy

where 9(d)/dx and 3(d)/dy are the bottom slopes in the x and y direction
respectively, and the subscript f denotes the horizontal velocity components
at the floor of the water body.

If the horizontal velocity distribution is uniform,i.e.,u =u = ug = u;, and
U =T = vy = vg, recombining equations [ A-3], [A-4], [A-6] and [A-7] gives:

M 2 l@+myu) + 2 [(d + ] =0 AS
ot ax o HITRSHETN [A-8]

which is the vertically averaged equation of continuity written for long
waves.

Since the landslide will vary the water depth over part of the study area,
the water depth is time dependent, and 91 /0t becomes d(n + d)/dt or adopt-
ing the notation of Raney and Butler, the continuity equation becomes:

on_of, 0

]
5t af a[(d+n)u]+5;[(d+n)v]—0 [A-9]
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which is their equation 3 (Raney and Butler, 1975, p. 8). ‘

For the appropriate equations of motion we start with the Nav1eertokes
equations written in the rectilinear Cartesian coordinate system of' Fig. A-1.
If w and its rates of change with respect to the horizontal coordinates are
assumed small, the Navier-Stokes equation for the z direction reduces to:

which is the hydrostatic equation ‘
Integrating over z to m, where the pressure at the surface is P, or atmo-

spheric:

Pg n
f dP=— f pgdz
P z

or
P=pglnix, y, t) —2] + P
This gives:
oP
0x dx 0x
oP om 0P
—_—= pg —_—t —
oy oy oy

and if P; is constant over the area in question:

P, _ 0P _

0x oy

and:

oP on -
LA [A-10]
X 0xX

LA [A-11]
dy oy

*

€L IIN I LHDIOA 308
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Now considering the Navier-Stokes equation for the x direction:

—+y—+v—+tw—=—-—-—

0 0 0 0 1P 1 (0 0
u u u u 1 ( Tax |, OTyx a'er) +F, [A-12]
pox p

0x oy 0z
where F, represents the force which the landslide exerts per unit mass of
water. If the horizontal stresses, 7., and 7,, are small with respect to 7,,,
they may be dropped. Substituting equation [A-10] for oP/ox gives:

ou ou ou ou an+1 0T,
ax p 0z

+F, [A-13]

Proceeding as before with the continuity equation, equation [A-13] and
the similar y-direction equation are integrated over z = —d to 7. After a sig-
nificant amount of rearranging and use of the Leibnitz rule one obtains for
the x direction:

ou ou ou on
v §—+——
ot ox ay ax p(d+n)

where 7, and 7¢, are the shear stresses at the top and floor of the fluid col-
umn, respectively. If no wind stress is considered, 75, = 0. For the bottom,
Raney and Butler assume the Chezy relationship between shear stress and
fluid velocity:

(Tsx — Tix) + Fy [A-14]

(uz + v2)1/2

Tex =P U A-15
tx = P& 3 [ ]

where Cg = (1.49/N) (d + 1)"/¢ and N = Manning friction factor.

Substituting equation [A-15] in [ A-14] gives:
ou du  ou 0 u? +v?)?
~—+u—~+v—=—g—ﬂ— & u( ) +F, [A-16]
ot ax dy ox (d+n) C%

Similarly for the y direction:
d ) F) F) 2 4 2 1/2
CUANCUANCL NS, S S LS L by [A-17]
ot ox  dy dy (d+n) Cx

Equations [A-16] and [A-17] are equations 1 and 2 of Raney and Butler
(1975, p. 8) with their equations 4 and 5 included.

The force of the landslide on the water, F, and F, are considered by
Raney and Butler to consist of three components, one due to displacement
of the water, and viscous drag and pressure drag forces. The water displace-
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ment component has already been accounted for in the 9¢/0t te.rm pf the
continuity equation. Considering the others, the viscous drag equation 1s:

Vf -
Fp=CpAp - [A-18]

where Fp = viscous drag force, Cp = coefficient of drag, A = surface area of

slide, p = fluid density, and V, = relative velocity between slide and ‘water.
The drag force per unit mass of water is:

Fp CpApV;

mass 20Vw

[A-19]

where ¥, is the volume of water acted on by Fp . Raney and Butler take this
balance over one grid cell of the finite difference scheme. Thus:

_F;D_ = CpAV: [A-20]
mass 2A.d

where V,, = A.d and A, = grid cell area, d = water depth.
They assume further that A/A. ~ 1 and thus:

Fp
mass
where o« = Cp/2d = 0.004/2(200) =1 X 1075 ft7' if Cp fox: turbuler‘lt flow
over a flat plate = 4.0 X 10-% and the average depth in their model is 60 m

(200 ft). o
Similarly the pressure drag due to the front of the slide is:

= a(Vsiige — Vwater)2

Fp _ CPPVZAz
mass 2pA.d

where A, is the vertical cross-section of the leading edge of the slide.
IfA,/A, ~ 1, then:

Fy
mass
where § ~ Cp/2d = 1/400 = 2.5 X 1073 ft7'if Cp ~ 1. .

Thus the final equations to be solved in the Raney and Butler numerical
model are:

= ﬁ(Vslide - Vwater)2

(1) the x-direction equation of motion
ou ou ou on g u@*+v
+ +g—=— "
ot ox ay ox d+n) Ck

2)1/2

+ (o +B)(Vo—u)* [A-21]
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(2) the y-direction equation of motion

v av v an g v(u?+ )2

t8=— + (o + — )2 )
ot o0x vay gay (d +n) ci (a +B)(Vy —v) [A-22]

(3) the continuity equation

an of

0 3
Primbon e (CRgOLY Yy [(d+n)v]=0 [A-23]

APPENDIX 2. VELOCITY ESTIMATES

A problem of major interest is calculating the velocity of a slide mass
either at impact or during entry, inasmuch as wave predictive procedures
require such input. This must be determined on an individual basis because
each slide locality has its own set of geometric factors and material proper-
ties. The literature, of course, contains abundant estimates of slide veloci-
ties. However, the reader must be cautioned that many of these estimates are
of questionable accuracy. Some, based on distance and estimated travel time,
purport to be average velocity estimates. Others, based on energy considera-
tions or block kinematics, may be erroneously high because of incorrect
assumptions of work expended, incorrect friction estimates, and/or inaccur-
ate idealization of the slide mass.

For example, the basic equation governing sliding of a rigid block on an
inclined plane is as follows,

V=V, +gt(sin i — tan ¢ cos i) [A-24]
or
V=V, + [2gs(sin i — tan ¢, cos i)]? [A-25]

where V is the velocity at elapsed time ¢t and downslope distances, g is gravita-
tional acceleration, i is slope angle of the slide plane, and ¢ is the angle of
dynamic sliding friction.

As applied to slides the equation dates from Heim (1932) and his col-
league Miiller-Bernet (see, e.g., Chapter 1, Volume 1). In the solution for a
single plane, acceleration is constant and velocity increases linearly with
time. Initial velocity V, is assumed small and may thus be usually ignored.
A curved or complex slide surface can be idealized as a series of planar seg-
ments, however, in which case V, can be taken as an initial velocity term for
each separately analyzed segment. Commonly it is assumed that the entire
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Fig. A-2. Comparison of motion analyses of (a) rigid block (lumped mass) and (b) con-
nected segment block models (after Banks et al., 1972). Slope angles i and j; distance of
transport, s. Initial acceleration ao, final acceleration, a;. In (a) acceleration is assumed
constant for each slope segment. In (b) acceleration varies as individual block segments
pass change in slope; value is constant when all blocks are on upper or lower slopes. In
velocity-time plot (c), models are identical except for region between point u, where mass
starts to slide on lower plane, and point I, where entire mass rests on lower plane. Peak
velocity predicted by (a) overestimates peak velocity of actual slide; solution (b)
approaches correct solution as size of segments decreases.

mass accelerates uniformly until the centroid passes the junction of the
planar segments. The result of this assumption is to overestimate the maxi-
mum velocity achieved by the slide mass, e.g., by as much as 100%. In an
improved solution the slide mass can be treated as a series of connected seg-
ments rather than as a simple mass concentrated at its centroid (Banks et al.,
1972).

A solution for the equation of motion based on the kinematics of a seg-
mented mass of total length [ sliding on two connected planes follows. Geo-
metric symbols are given in Fig. A-2. Slide displacement is s, elapsed time is
¢, friction coefficient on plane with slope i is tan Osy-

k
§= ;1 (1 —cosVEx t) : [A-26]
2
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ds ky

TR sinvk, t [A-27]
d?s

—(it—2=kl cosvk,t [A-28]
where:

ky = g(sin i — tan ¢g;, cos i)
k, = [(sin i — tan ¢y cos i) — (sin j — tan ¢y cos j)] 5?

Given an appropriate set of equations of motion and a reasonably defined
geometx;y, the problem still remains to specify the appropriate material
properties — most notably the dynamic coefficients of friction. There is as
yet no suitable way of readily obtaining this information in the field. Static
or quasi-static friction coefficients are not appropriate, and perturbations
concerning surface roughness are complexly involved.

In the absence of reliable measurement procedures, we recommend
analysis based on average friction values reported in the literature for rock
slides. The average effective friction angle is approximately given by the line
connecting the mass centers of the slide mass before and after the sliding
event; most of the friction-coefficient data determined in this manner fall
into the range 0.25* 0.15 (cf. Scheidegger, 1973; Banks and Strohm,
1974). These values are not wholly independent of the model assumed for
motion analysis (e.g., rigid block versus segmented block on multiple planes);
however, the variation of friction coefficient due to model idealization is
usually very small.

For determination of displacement-time relationships for landslides pene-
trating water bodies, the equations of motion must be modified to include
appropriate drag forces as indicated in Appendix 1.

APPENDIX 3. DIMENSIONLESS KINETIC ENERGY MODEL

When this chapter was in proof we were fortunate to obtain a copy of the
report, “Hydraulic Model Studies, Wave Action Generated by Slides into

‘Mica Reservoir (British Columbia),” by Western Canada Hydraulic Labora-

tories, Ltd. This study included slides with an order of magnitude larger
dimensionless kinetic energy than the WES study, and therefore enabled us
to refine our estimate of the coefficients for equation [10], the regression
equation of dimensionless wave amplitude versus dimensionless kinetic
energy.
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Fig. A-3 is a plot of the WES data as used in Fig. 28 (but here all n/d val-
ues have been extrapolated by the inverse formula to r/d = 4) plus six values
from the Mica Reservoir study (all extrapolated to r/d = 4). These are all first-
wave amplitudes for sites approximately in front of a slide.

The regression equation:

10g(Mmax/d) = a + b l0g(KE) [10]

has for Fig. A-3, coefiicientsa =—1.25and b = +0.71, with 97% of the varia-
tion in 10g(Nmax/d) “explained” by variation in log (KE) *. The relationship
thus seems to be linear over two orders of magnitude of log (KE). For these
data, 1 < KE < 100, and 0.3 < h/d < 0.8.

Lituya Bay

=
o

Disenchantment
Bay

Nmax/d (dimensionless)

| I ! Lol 1 1 e | T—

1 10 100
Slide kinetic energy KE (dimensionless)

Fig. A-3. Relationship of maximum wave amplitudes (r/d ~ 4) as a functior} of slide
dimensionless kinetic energy. WES Lake Koocanusa data denoted by squares, Mica Reser-
voir data by circles. The regression equation is significant at the 97% level: 95% con-
fidence limits are indicated by dashed lines. For comparison, best estimates of actual
wave amplitudes and associated kinetic energies are indicated for Lituya Bay (box) and
Disenchantment Bay (line connecting open squares) events (Table V).

* Note that spurious correlation between these variables is possible due to the a‘ppearance
of depth in the denominator of both. For example, if the variances of dimensional wave
amplitude, dimensional slide kinetic energy, and water depth were all equal, and ther.e
was no correlation between wave amplitude and kinetic energy, the correlation coeffi-
cient due to depth alone would be 0.69 (Kenneth Potter, personal communication). How-
ever, the variance of water depth in these data is much less than that of the other variables
and this effect is minimized here.

PREDICTIVE MODELS OF LANDSLIDE-GENERATED WATER WAVES 395

On the other hand, three problems must be noted with this empirical mo-
del. First the regression equation [10] is quite sensitive to water depths, a
condition troublesome for irregular bathymetries. Second, the model has not
accounted for variations in wave amplitude at radially equidistant points
from a slide. Amplitudes directly in front of a slide are empirically known to
be highest, indicating the importance of slide configuration and orientation.
Third, the present coefficients of equation [10] are not conservative for
broad slides at low dimensionless kinetic energy. Perhaps later data will sug-
gest separate design curves for slides acting as line sources versus point sour-
ces.

Analysis of other empirical data from tﬁe Mica Reservoir model study also
shows that:

(1) decrease of wave amplitude is inversely proportional to distance,
(2) the first wave near a slide is always the highest, but far away, the high-
est waves often occur later in the train,

(3) at radially equidistant points from a slide, wave amplitudes strongly
decrease with increasing angular deviation from the direction of slide entry
(this appears to be especially important for wider slides),

(4) celerity of the first wave follows C =+/g(d +1). These results are con-
sistent with our previous conclusions. .

»
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