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Effects of Aridity and Vegetation on the δD of Modern Lake Sediment Plant Waxes
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Box 1 – Modeling Approach
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Figure 5 – Effects of climate on leaf- and 
lakewater enrichment and εC29/ppt.
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Figure 4 –  εC29/ppt and lakewater enrichment.
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Figure 3 – εC29/ppt grouped by biome.
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Figure 2 – Alkane and precipitation δD, and εC29/ppt.
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Figure 1 – Sampling sites.
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Our results demonstrate both climate and vegetation are determinants of the isotopic 
fractionation between precipitation and n-alkane hydrogen.  Both must be considered when 
interpreting the δD of ancient plant waxes.

Isotopic differences between ecosystems reflect the influence of both plant physiology and the 
physical layout of the ecosystem on isotopic effects during soil evaporation and transpiration.  
Biosynthetic differences may also play a role but cannot be separately evaluated from the data.

Isotope models for soilwater, leafwater and lipid δD may further our understanding of 
evaporative and biosynthetic effects, however these models are not well constrained at present.

Conclusions

Isotope models illustrate the relationship between lakewater enrichment and leaf-wax δD as a function of 
climate and lake/watershed area (Fig. 5).  Ongoing work aims to quantitatively model each watershed to 
differentiate the effects of soil evaporation from leaf transpiration (Box 1).

Isotopic Modeling

The evaporative enrichment of lakewater isotopes 
depends upon many of the same variables responsible 
for soil- and leaf-water enrichment (temperature, 
relative humidity, precip./evap. ratio).  We compare 
εC29/ppt with lakewater enrichment in each watershed as 
a qualitative indicator for isotope effects from aridity.

We find that isotopic fractionation of εC29/ppt n-
alkane/ precipitation  increases with aridity (Fig. 4).  
The rate of increase is different for each ecosystem 
suggesting that vegetation influences how plant-
wax δD responds to climate. 

Aridity Increases n-Alkane δD

Values for εC29/ppt are different for each ecosystem 
suggesting vegetation plays a determining role in 
plant-wax δD (Fig. 3).  Vegetation can influence δD 
through species-dependent leafwater enrichment, 
soil evaporation and biosynthetic effects.

Precipitation δD is the first-order control on plant wax δD (Fig. 2).   Expressing n-alkane δD as an isotopic 
fractionation relative to precipitation highlights the effects of vegetation and climate on plant-wax δD:

				εC29/ppt = (δDC29 
+ 1)/(δDppt + 1) – 1

n-Alkane/Precipitation δD

Our samples (Fig. 1) integrate vegetation sources in each lake’s 
watershed over multiple years, providing a temporal average of 
the watershed ecosystem analogous to many ancient sediments.  

Modern Lake Sites

The hydrogen isotopic composition of plant-wax molecules is systematically related to the δD of 
precipitation, providing a basis to reconstruct paleoprecipitation δD and paleohydrology.  However, 
climate and physiological factors also affect δD making the interpretation of plant-wax δD signatures 
a challenge.

We analyzed the deuterium content of plant-wax n-alkanes from surface lake sediments in 31 
watersheds that span a range of precipitation δD, vegetation types and climates to better 
understand how each of these variables shape plant-wax δD. 
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